Issue 41, 2015

Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency

Abstract

We present a facile mechanochemical route for the preparation of hybrid CH3NH3PbI3 (MAPbI3) perovskite particles with the size of several hundred nanometers for high-efficiency thin-film photovoltaic devices. Powder X-ray diffraction measurements demonstrate that mechanosynthesis is a suitable strategy to produce a highly crystalline CH3NH3PbI3 material showing no detectable amounts of the starting CH3NH3I and PbI2 reagents. Thermal stability measurements based on the thermogravimetric analysis data of mechanosynthesized perovskite particles indicated that the as-ground MAPbI3 is stable up to 300 °C with no detectable material loss at lower temperatures. The optical properties of newly synthesized perovskite particles were characterized by applying steady state absorption and fluorescence spectroscopy, which confirmed a direct band-gap of 1.48 eV. Time resolved single photon counting measurements revealed that 70% of charges undergo recombination with a 61 ns lifetime. The solar cell devices made from mechanosynthesized perovskite particles achieved a power conversion efficiency of 9.1% when applying a one step deposition method.

Graphical abstract: Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2015
Accepted
25 Aug 2015
First published
27 Aug 2015

J. Mater. Chem. A, 2015,3, 20772-20777

Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency

D. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel and J. Lewiński, J. Mater. Chem. A, 2015, 3, 20772 DOI: 10.1039/C5TA04904K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements