Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Hormones regulating lipid metabolism and plasma lipids in childhood obesity

Abstract

OBJECTIVE: To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children.

METHOD:Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children.

RESULTS: Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides.

CONCLUSION: Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Woods CS, Seeley RJ, Porte D, Schwartz MW . Signals that regulate food intake and energy homeostasis. Science 1998; 280: 1378–1382.

    Article  CAS  Google Scholar 

  2. Marx J . Cellular warriors at the battle of the bulge. Science 2003; 299: 846–852.

    Article  CAS  Google Scholar 

  3. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR . Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 2002; 418: 650–654.

    Article  CAS  Google Scholar 

  4. Baile CA, Della-Fera MA, Martin RJ . Regulation of metabolism and body fat mass by leptin. Annu Rev Nutr 2000; 20: 105–127.

    Article  CAS  Google Scholar 

  5. Harris RBS . Leptin—much more than a satiety signal. Annu Rev Nutr 2000; 20: 45–75.

    Article  CAS  Google Scholar 

  6. Minokoshi Y, Kahn BB . Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem Soc Trans 2003; 31 (Part 1): 196–201.

    Article  CAS  Google Scholar 

  7. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T . Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  Google Scholar 

  8. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T . Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762–769.

    Article  CAS  Google Scholar 

  9. Kopelman PG . Obesity as a medical problem. Nature 2000; 404: 635–643.

    Article  CAS  Google Scholar 

  10. Caprio S, Bronson M, Shervin RS, Rife F, Tamborlane WV . Coexistence of severe insulin resistance and hyperinsulinemia in preadolescent obese children. Diabetologia 1996; 39: 1489–1497.

    Article  CAS  Google Scholar 

  11. Valle M, Gascón F, Martos R, Ruz FJ, Bermudo F, Morales R, Cañete R . Metabolic cardiovascular syndrome in obese prepubertal children: the role of high fasting insulin levels. Metabolism 2002; 51: 423–428.

    Article  CAS  Google Scholar 

  12. Moreno LA, Pineda I, Rodriguez G, Fleta J, Giner A, Juste MG, Sarría A, Bueno M . Leptin and metabolic syndrome in obese and non-obese children. Horm Metab Res 2002; 34: 394–399.

    Article  CAS  Google Scholar 

  13. Arita Y, kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y . Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79–83.

    Article  CAS  Google Scholar 

  14. Matsubara M, Maruoka S, Katayose S . Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol 2002; 147: 173–180.

    Article  CAS  Google Scholar 

  15. Baratta M . Leptin—from a signal of adiposity to a hormonal mediator in peripheral tissues. Med Sci Monitor 2002; 8: RA282–RA292.

    CAS  Google Scholar 

  16. Díez JJ, Iglesias P . The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Clin Endocrinol 2003; 148: 293–300.

    Article  Google Scholar 

  17. Fried SK, Ricci MR, Russell CD, Laferrère B . Regulation of leptin production in humans. J Nutr 2000; 130: 3127–3131.

    Article  Google Scholar 

  18. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ . AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004; 279: 12005–12008.

    Article  CAS  Google Scholar 

  19. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ, Kahn BB . AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569–574.

    Article  CAS  Google Scholar 

  20. Unger RH . The hyperleptinemia of obesity—regulator of caloric surpluses. Cell 2004; 117: 145–146.

    Article  CAS  Google Scholar 

  21. Girard J . Is leptin the link between obesity and insulin resistance? Diabetes Metab 1997; 23 (Suppl 3): 16–24.

    CAS  PubMed  Google Scholar 

  22. Larsson H, Elmstahl S, Ahren B . Plasma leptin levels correlate to islet function independently of body fat in postmenopausal women. Diabetes 1996; 45: 1580–1584.

    Article  CAS  Google Scholar 

  23. Saltiel AR . The paradoxical regulation of protein phosphorylation in insulin action. FASEB J 1994; 8: 1034–1040.

    Article  CAS  Google Scholar 

  24. Beltowski J . Adiponectin and resistin—new hormones of white adipose tissue. Med Sci Monitor 2003; 9: RA55–RA61.

    CAS  Google Scholar 

  25. Stefan N, Stumvoll M . Adiponectin—its role in metabolism and beyond. Horm Metab Res 2002; 43: 469–474.

    Article  Google Scholar 

  26. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, Youngren JF, Havel PJ, Pratley RE, Bogardus C, Tataranni PA . Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 2002; 51: 1884–1888.

    Article  CAS  Google Scholar 

  27. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y . Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002; 8: 731–737.

    Article  CAS  Google Scholar 

  28. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF . Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001; 98: 2005–2010.

    Article  CAS  Google Scholar 

  29. Valle M, Gascón F, Martos R, Bermudo F, Ceballos P, Suanes A . Relationship between high plasma leptin concentrations and metabolic syndrome in obese pre-pubertal children. Int J Obes Relat Metab Disord 2003; 27: 13–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Fondo de Investigaciones Sanitarias (FIS, Project no. PI 020826), Ministerio de Salud y Consumo and the Fundación Salud 2000, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil-Campos, M., Cañete, R. & Gil, A. Hormones regulating lipid metabolism and plasma lipids in childhood obesity. Int J Obes 28 (Suppl 3), S75–S80 (2004). https://doi.org/10.1038/sj.ijo.0802806

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802806

Keywords

This article is cited by

Search

Quick links