Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas

Abstract

Dual-specificity phosphatase 6 (DUSP6, mitogen-activated protein kinase (MAPK) phosphatase 3 or PYST1) dephosphorylates phosphotyrosine and phosphothreonine residues on extracellular signal-regulated kinase (ERK1/2; MAPK1/2) to inactivate the ERK1/2 kinase. DUSP6 is a critical regulator of the ERK signaling cascade and has been implicated as a tumor suppressor. We report here experimental evidences that DUSP6 is transcriptionally upregulated in primary and long-term cultures of human glioblastoma, as assayed by northern hybridization and real-time quantitative PCR, producing constitutive high level of protein expression. Functional assays were performed with adenovirus-mediated expression of DUSP6 in glioblastoma cultures. Protein overexpression inhibits growth by inducing G1-phase delay and increased mitogenic/anchorage dependence and clonogenic potential in vitro. Changes in cell morphology were associated with an increased tumor growth in vivo. Chemoresistance is a major cause of treatment failure and poor outcome in human glioblastomas. Importantly, DUSP6 overexpression increased resistance to cisplatin-mediated cell death in vitro and in vivo. Antisense-mediated depletion of DUSP6 acted in lowering the threshold to anticancer DNA-damaging drugs. We conclude that upregulation of DUSP6 exerts a tumor-promoting role in human glioblastomas exacerbating the malignant phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arany I, Megyesi JK, Kameto H, Price PM, Safirstein LR . (2004). Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. Am J Physiol Renal Physiol 287: F543–F549.

    Article  CAS  PubMed  Google Scholar 

  • Bermudez O, Jouandin P, Rottier J, Bourcier C, Gilles P, Gimond C . (2011). Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signalling and hypoxia. J Cell Physiol 226: 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Bloethner S, Chen B, Hemminki K, Müller-Berghaus J, Ugurel S, Schadendorf D et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26: 1224–1232.

    Article  CAS  PubMed  Google Scholar 

  • Calogero A, Lombari V, De Gregorio G, Porcellini A, Ucci S, Arcella A et al. (2004). Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma. Cancer Cell Int 4: 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan DW, Liu VW, Tsao GS, Yao KM, Furukawa T, Chan KK et al. (2008). Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29: 1742–1750.

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A et al. (2007). A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Parra I, Zhang M, Hilsenbeck SG, Tsimelzon A, Furukawa T et al. (2006). Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: a mechanism of tamoxifen resistance. Cancer Res 66: 5950–5959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21: 2683–2710.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Fujisaki R, Yoshida Y, Kanai N, Sunamura M, Abe T et al. (2005). Distinct progression pathways involving the dysfunction of DUSP6/MKP3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod Pathol 18: 1034–1042.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Sunamura M, Motoi F, Matsuno S, Horii A . (2003). Potential tumor suppressive pathway involving DUSP6/MKP3/MKP-3 in pancreatic cancer. Am J Pathol 162: 1807–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozdz A, Habas A, Jaworski J, Zielinska M, Albrecht J, Chlystun M et al. (2003). Role of N-methyl-D-aspartate receptors in the neuroprotective activation of extracellular signal-regulated kinase ½ by cisplatin. J Biol Chem 278: 43663–43671.

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Li X, Jin H, Yan L, Wu K, Ding J et al. (2007). Up-regulation of tumor suppressor genes might promote the malignant phenotype of cancer cells. Med Hypotheses 69: 1379.

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Song MC, Kwak IH, Park TJ, Lim IK . (2003). Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J Biol Chem 278: 37497–37510.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Guessous F, Kwon S, Kumar M, Ibidapo O, Fuller L et al. (2008). PTEN has tumor-promoting properties in the setting of gain-of-function p53 p53 mutations. Cancer Res 68: 1723–1731.

    Article  CAS  PubMed  Google Scholar 

  • Lucci MA, Orlandi R, Triulzi T, Tagliabue E, Balsari A, Villa-Moruzzi E . (2010). Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cell Oncol 32: 361–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK et al. (2001). Malignant glioma: genetics and biology of a grave matter. Genes Dev 15: 1311–1333.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti S, Gimond C, Chambard JC, Touboul T, Roux D, Pouysségur J et al. (2005). Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/DUSP6 at serines 159 and 197, two sites critical for its proteasomal degradation. Mol Cell Biol 25: 854–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti S, Gimond C, Roux D, Gothié E, Pouysségur J . (2004). Inducible expression of a MAP kinase phosphatase-3-GFP chimera specifically blunts fibroblast growth and ras-dependent tumor formation in nude mice. J Cell Physiol 199: 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Mark JK, Aubin RA, Smith S, Hefford MA . (2008). Inhibition of mitogen-activated protein kinase phosphatase 3 activity by interdomain binding. J Biol Chem 283: 28574–28583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay MM, Morrison DK . (2007). Integrating signals from RTKs to ERK/MAPK. Oncogene 26: 3113–3121.

    Article  CAS  PubMed  Google Scholar 

  • Messina S, Leonetti C, De Gregorio G, Affatigato V, Ragona G, Frati L et al. (2004). Ras inhibition amplifies cisplatin sensitivity of human glioblastoma. Biochem Biophys Res Comm 320: 493–500.

    Article  CAS  PubMed  Google Scholar 

  • Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C et al. (1996). The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271: 27205–27208.

    Article  CAS  PubMed  Google Scholar 

  • Murphy LO, Blenis J . (2006). MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ . (1996). A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56: 5079–5086.

    CAS  PubMed  Google Scholar 

  • Nunes-Xavier CE, Tárrega C, Cejudo-Marín R, Frijhoff J, Sandin A, Ostman A et al. (2010). Differential up-regulation of MAP kinase phosphatase MKP3/DUSP6 and DUSP5 by Ets2 and c-jun converge in the control of the growth arrest versus proliferation response of MCF-7 breast cancer cells to phorbol ester. J Biol Chem 285: 26417–26430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okudela K, Yazawa T, Woo T, Sakaeda M, Ishii J, Mitsui H et al (2009). Down-regulation of DUSP6/MKP3 expression in lung cancer: its mechanism and potential role in carcinogenesis. Am J Pathol 175: 867–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens DM, Keyse SM . (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26: 3203–3213.

    Article  CAS  PubMed  Google Scholar 

  • Patterson KI, Brummer T, O'Brien PM, Daly LJ . (2009). Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418: 475–489.

    Article  CAS  PubMed  Google Scholar 

  • Petalidis LP, Oulas A, Backlund M, Wayland MT, Liu L, Plant K et al. (2008). Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data. Mol Cancer Ther 7: OF1–OF9.

    Article  Google Scholar 

  • Porcellini A, De Blasi A . (2004). Viral infection protocols. Methods Mol Biol 259: 155–166.

    CAS  PubMed  Google Scholar 

  • Porcellini A, Ruggiano G, Pannain S, Ciullo I, Amabile G . (1997). Mutations of thyrotropin receptor isolated from thyroid autonomous functioning adenomas confer TSH-independent growth to thyroid cells. Oncogene 15: 781–789.

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al. (2010). Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468: 824–828.

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Vaughan MB, Girard L, Peyton M, Lee W, Shames DS et al. (2006). Multiple oncogenic changes (K-RASV12, p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res 66: 2116–2128.

    Article  CAS  PubMed  Google Scholar 

  • Silvani A, Gaviani P, Lamperti EA, Eoli M, Falcone C, Dimeco F et al. (2009). Cisplatinum and BCNU chemotherapy in primary glioblastoma patients. J Neurooncol 94: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Tanuma N, Nomura M, Ikeda M, Kasugai I, Tsubaki Y, Takagaki K et al. (2009). Protein phosphatase Dusp26 associates with KIF3 motor and promotes N-cadherin-mediated cell-cell adhesion. Oncogene 28: 752–761.

    Article  CAS  PubMed  Google Scholar 

  • Tullai JW, Schaffer ME, Mullenbrock S, Kasif S, Cooper GM . (2004). Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol 3-kinase and MEK/ERK signaling pathways. J Biol Chem 279: 20167–20177.

    Article  CAS  PubMed  Google Scholar 

  • Waha A, Felsberg J, Hartmann W, von dem Knesebeck A, Mikeska T, Joos S et al. (2010). Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves growth suppressive activity in glioma cells. Cancer Res 70: 1689–1699.

    Article  CAS  PubMed  Google Scholar 

  • Warmka JK, Mauro LJ, Wattenberg EV . (2004). Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras. J Biol Chem 279: 33085–33092.

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. (2009). IDH1 and IDH2 mutations in gliomas. N Engl J Med 360: 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Kobayashi S, Borczuk AC, Leidner RS, Laframboise T, Levine AD et al. (2010). Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signalling in lung cancer cells. Carcinogenesis 31: 577–586.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Angela Santoni for her continued support. We thank Dr de Franciscis and Dr Colucci D’Amato for providing DUSP6-MKP3 cDNA in the pSG5 vectors; Dr Furnari and Dr Cavenee for mutant EGFRvIII U87MG cells and Dr Ricci-Vitiani for primary cultures of glioblastomas. We especially thank Dr Johan Lennartson for the ‘home-made’ antibody anti-DUSP6/MKP3 and Dr Stephen Keyse for critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Messina or A Porcellini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messina, S., Frati, L., Leonetti, C. et al. Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas. Oncogene 30, 3813–3820 (2011). https://doi.org/10.1038/onc.2011.99

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.99

Keywords

This article is cited by

Search

Quick links