Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leptin as a metabolic link to multiple sclerosis

Abstract

Clinical and experimental data, together with epidemiological studies, have suggested that the pathogenesis of multiple sclerosis (MS) might involve factors that link the immune system with metabolic status. Moreover, recent research has shown that leptin, the adipocyte-derived hormone that controls food intake and metabolism, can promote experimental autoimmune encephalomyelitis, an animal model of MS. In patients with MS, the association of leptin with disease activity has been dissected at the molecular level, providing new mechanistic explanations for the role of this hormone in MS. Here, we review the intricate relationship between leptin and other metabolic modulators within a framework that incorporates the latest advances linking the CNS, immune tolerance and metabolic status. We also consider the translational implications of these new findings for improved management of MS.

Key Points

  • Leptin is an adipocyte-derived hormone that is secreted proportionally to adipose tissue mass and inhibits food intake

  • Leptin links the immune response to metabolism and nutritional status

  • Leptin promotes proinflammatory immune responses and inhibits the proliferation of anti-inflammatory regulatory T cells

  • Orexigenic mediators antagonize the anorexigenic and proinflammatory effects of leptin in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS)

  • Drugs that affect metabolism are effective at reducing the proinflammatory effects of leptin in EAE

  • Given the beneficial effects of leptin blockade on EAE outcome, leptin could represent an attractive target to reduce autoimmune inflammation in MS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular leptin signaling in immune cells.
Figure 2: Immune function and metabolic status.

Similar content being viewed by others

References

  1. Ahima, R. S. & Flier, J. S. Leptin. Annu. Rev. Physiol. 62, 413–437 (2000).

    Article  CAS  Google Scholar 

  2. La Cava, A. & Matarese, G. The weight of leptin in immunity. Nat. Rev. Immunol. 4, 371–379 (2004).

    Article  CAS  Google Scholar 

  3. O'Neill, L. A role for leptin in autoimmunity? Trends Immunol. 22, 352 (2001).

    Article  CAS  Google Scholar 

  4. Matarese, G. & La Cava, A. The intricate interface between immune system and metabolism. Trends Immunol. 25, 193–200 (2004).

    Article  CAS  Google Scholar 

  5. Steinman, L. A molecular trio in relapse and remission in multiple sclerosis. Nat. Rev. Immunol. 9, 440–447 (2009).

    Article  CAS  Google Scholar 

  6. Matarese, G. et al. Balancing susceptibility to infection and autoimmunity: a role for leptin? Trends Immunol. 23, 182–187 (2002).

    Article  CAS  Google Scholar 

  7. De Rosa, V. et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241–255 (2007).

    Article  CAS  Google Scholar 

  8. Sánchez-Margalet, V. et al. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin. Exp. Immunol. 133, 11–19 (2003).

    Article  Google Scholar 

  9. Hekerman, P. et al. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. FEBS J. 272, 109–119 (2005).

    Article  CAS  Google Scholar 

  10. Chan, J. L. et al. Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans. Proc. Natl Acad. Sci. USA 103, 8481–8486 (2006).

    Article  CAS  Google Scholar 

  11. Sanna, V. et al. Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J. Clin. Invest. 111, 241–250 (2003).

    Article  CAS  Google Scholar 

  12. Howard, J. K. et al. Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest. 104, 1051–1059 (1999).

    Article  CAS  Google Scholar 

  13. Matarese, G. et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166, 5909–5916 (2001).

    Article  CAS  Google Scholar 

  14. Sarraf, P. et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J. Exp. Med. 185, 171–175 (1997).

    Article  CAS  Google Scholar 

  15. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  16. Matarese, G. et al. Leptin increase in multiple sclerosis associates with reduced number of CD4+CD25+ regulatory T cells. Proc. Natl Acad. Sci. USA 102, 5150–5155 (2005).

    Article  CAS  Google Scholar 

  17. De Rosa, V. et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J. Clin. Invest. 116, 447–455 (2006).

    Article  CAS  Google Scholar 

  18. Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    Article  CAS  Google Scholar 

  19. Härle, P. & Straub, R. H. Leptin is a link between adipose tissue and inflammation. Ann. NY Acad. Sci. 1069, 454–462 (2006).

    Article  Google Scholar 

  20. Frisullo, G. The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing–remitting multiple sclerosis. J. Neuroimmunol. 192, 174–183 (2007).

    Article  CAS  Google Scholar 

  21. Munger, K. L., Chitnis, T. & Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 73, 1543–1550 (2009).

    Article  Google Scholar 

  22. Gomez, R., Lago, F., Gomez-Reino, J., Dieguez, C. & Gualillo, O. Adipokines in the skeleton: influence on cartilage function and joint degenerative diseases. J. Mol. Endocrinol. 43, 11–18 (2009).

    Article  CAS  Google Scholar 

  23. Lago, F., Dieguez, C., Gómez-Reino, J. & Gualillo, O. Adipokines as emerging mediators of immune response and inflammation. Nat. Clin. Pract. Rheumatol. 3, 716–724 (2007).

    Article  CAS  Google Scholar 

  24. Taleb, S. et al. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2691–2698 (2007).

    Article  CAS  Google Scholar 

  25. Dixit, V. D. et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Invest. 114, 57–66 (2004).

    Article  CAS  Google Scholar 

  26. Theil, M. M. et al. Suppression of experimental autoimmune encephalomyelitis by ghrelin. J. Immunol. 183, 2859–2866 (2009).

    Article  CAS  Google Scholar 

  27. Bedoui, S. et al. Neuropeptide Y (NPY) suppresses experimental autoimmune encephalomyelitis: NPY1 receptor-specific inhibition of autoreactive Th1 responses in vivo. J. Immunol. 171, 3451–3458 (2003).

    Article  CAS  Google Scholar 

  28. Malfitano, A. M. et al. Arvanil inhibits T lymphocyte activation and ameliorates autoimmune encephalomyelitis. J. Neuroimmunol. 171, 110–119 (2006).

    Article  CAS  Google Scholar 

  29. Piccio, L., Stark, J. L. & Cross, A. H. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J. Leukoc. Biol. 84, 940–948 (2008).

    Article  CAS  Google Scholar 

  30. Longo, V. D. & Fontana, L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol. Sci. 31, 89–98 (2010).

    Article  CAS  Google Scholar 

  31. Esquifino, A. I., Cano, P., Jimenez, V., Cutrera, R. A. & Cardinali, D. P. Experimental allergic encephalomyelitis in male Lewis rats subjected to calorie restriction. J. Physiol. Biochem. 60, 245–252 (2004).

    Article  CAS  Google Scholar 

  32. Esquifino, A. I., Cano, P., Jimenez-Ortega, V., Fernandez-Mateos, M. P. & Cardinali, D. P. Immune response after experimental allergic encephalomyelitis in rats subjected to calorie restriction. J. Neuroinflammation 4, 6 (2007).

    Article  Google Scholar 

  33. Hewson, D. C. Is there a role for gluten-free diets in multiple sclerosis? Hum. Nutr. Appl. Nutr. 38, 417–420 (1984).

    CAS  PubMed  Google Scholar 

  34. Swank, R. L. & Dugan, B. B. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet 336, 37–39 (1990).

    Article  CAS  Google Scholar 

  35. Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005–8014 (2009).

    Article  CAS  Google Scholar 

  36. Diab, A. et al. Peroxisome proliferator-activated receptor-γ agonist 15-deoxy-Δ12,14-prostaglandin J2 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 168, 2508–2515 (2002).

    Article  CAS  Google Scholar 

  37. Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002).

    Article  CAS  Google Scholar 

  38. Heneka, M. T., Landreth, G. E. & Hüll, M. Drug insight: effects mediated by peroxisome proliferator-activated receptor-γ in CNS disorders. Nat. Clin. Pract. Neurol. 3, 496–504 (2007).

    Article  CAS  Google Scholar 

  39. Zhang, X. & Markovic-Plese, S. Statins' immunomodulatory potential against Th17 cell-mediated autoimmune response. Immunol. Res. 41, 165–174 (2008).

    Article  CAS  Google Scholar 

  40. Udagawa, J. et al. The role of leptin in the development of the cerebral cortex in mouse embryos. Endocrinology 147, 647–658 (2006).

    Article  CAS  Google Scholar 

  41. Valerio, A. et al. Leptin increases axonal growth cone size in developing mouse cortical neurons by convergent signals inactivating glycogen synthase kinase-3β. J. Biol. Chem. 281, 12950–12958 (2006).

    Article  CAS  Google Scholar 

  42. Ahima, R. S., Bjorbaek, C., Osei, S. & Flier, J. S. Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology 140, 2755–2762 (1999).

    Article  CAS  Google Scholar 

  43. Levine, J. M., Reynolds, R. & Fawcett, J. W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47 (2001).

    Article  CAS  Google Scholar 

  44. Steinman, L., Conlon, P., Maki, R. & Foster, A. The intricate interplay among body weight, stress, and the immune response to friend or foe. J. Clin. Invest. 111, 183–185 (2003).

    Article  CAS  Google Scholar 

  45. Kuchroo, V. K. & Nicholson, L. B. Fast and feel good? Nature 422, 27–28 (2003).

    Article  CAS  Google Scholar 

  46. Gao, Q. & Horvath, T. L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 30, 367–398 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G. Matarese is supported by grants from the European Union Ideas Program, ERC-Starting Independent Grant 'LeptinMS' project number 202579 and Telethon-JDRF Grant project number GJT08004. A. La Cava is supported in part by NIH grant AR53239. The authors thank Salvatore De Simone and Francesco D'Agnello for art graphics and the models in the figure. This work is dedicated to the memory of Eugenia Papa and Serafino Zappacosta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Matarese.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matarese, G., Carrieri, P., Montella, S. et al. Leptin as a metabolic link to multiple sclerosis. Nat Rev Neurol 6, 455–461 (2010). https://doi.org/10.1038/nrneurol.2010.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing