Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Using human brain lesions to infer function: a relic from a past era in the fMRI age?

Abstract

Recent technological advances, such as functional imaging techniques, allow neuroscientists to measure and localize brain activity in healthy individuals. These techniques avoid many of the limitations of the traditional method for inferring brain function, which relies on examining patients with brain lesions. This has fueled the zeitgeist that the classical lesion method is an inferior and perhaps obsolescent technique. However, although the lesion method has important weaknesses, we argue that it complements the newer activation methods (and their weaknesses). Furthermore, recent developments can address many of the criticisms of the lesion method. Patients with brain lesions provide a unique window into brain function, and this approach will fill an important niche in future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The left hemisphere of Broca's famous patient Leborgne.
Figure 2: Overlay plots.
Figure 3: Improved computerized tomography (CT) imaging has resulted in more accurate mapping of lesion size and location.
Figure 4: The importance of using control groups in lesion studies.
Figure 5: Voxel-based analysis of lesions (VAL) applied to the data described in figure 4.

Similar content being viewed by others

References

  1. Broca, P. Remarques sur le siège de la faculté du langage articulé suivies d'une observation d'aphémie (perte de la parole). Bull. Soc. Anat. 6, 330–357 (1861).

    Google Scholar 

  2. Wernicke, C. Der Aphasische Symptomencomplex (Cohn and Weigert, Breslau, 1874).

    Google Scholar 

  3. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  4. Sperry, R. W., Gazzaniga, M. S. & Bogen, J. E. in Handbook of Clinical Neurology (eds Vinken, P. J. & Bruyn, G. W.) 273–290 (John Wiley and Sons, New York, 1969).

    Google Scholar 

  5. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. R. Fear and the human amygdala. J. Neurosci. 15, 5879–5891 (1995).

    Article  CAS  Google Scholar 

  6. Calder, A. J., Keane, J., Manes, F., Antoun, N. & Young, A. Impaired recognition and experience of disgust following brain injury. Nature Neurosci. 3, 1077–1078 (2000).

    Article  CAS  Google Scholar 

  7. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  Google Scholar 

  8. Amunts, K. et al. Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. Neuroimage 22, 42–56 (2004).

    Article  Google Scholar 

  9. Frey, R., Woods, D. L., Knight, R. T. & Scabini, D. Defining functional cortical areas with 'averaged' CT scans. Soc. Neurosci. Abstr. 13, 1266 (1987).

    Google Scholar 

  10. Hayward, R. W., Naeser, M. A. & Zatz, L. M. Cranial computed tomography in aphasia- correlation of anatomical lesions with functional deficits. Radiology 123, 653–660 (1977).

    Article  CAS  Google Scholar 

  11. Kertesz, A., Harlock, W. & Coates, R. Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain Lang. 8, 34–50 (1979).

    Article  CAS  Google Scholar 

  12. Damasio, H. & Damasio, A. R. Lesion Analysis in Neuropsychology (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  13. Farah, M. J. Neuropsychological inference with an interactive brain: a critique of the locality assumption. Behav. Brain Sci. 17, 43–61 (1994).

    Article  Google Scholar 

  14. Miller, E. K. The prefrontal cortex and cognitive control. Nature Rev. Neurosci. 1, 59–65 (2000).

    Article  CAS  Google Scholar 

  15. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  CAS  Google Scholar 

  16. Heinsius, T., Bogousslavsky, J. & Van Melle, G. Large infarcts in the middle cerebral artery territory. Etiology and outcome patterns. Neurology 50, 341–350 (1998).

    Article  CAS  Google Scholar 

  17. Raineteau, O. & Schwab, M. E. Plasticity of motor systems after incomplete spinal cord injury. Nature Rev. Neurosci. 2, 263–273 (2001).

    Article  CAS  Google Scholar 

  18. Caviness, V. S. et al. Anatomy of stroke, part I: an MRI-based topographic and volumetric system of analysis. Stroke 33, 2549–2556 (2002).

    Article  CAS  Google Scholar 

  19. Sarter, M., Berntson, G. G. & Cacioppo, J. T. Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. Am. Psychol. 51, 13–21 (1996).

    Article  CAS  Google Scholar 

  20. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589 (1988).

    Article  CAS  Google Scholar 

  21. Karbe, H. et al. Planum temporale and Brodmann's area 22. Magnetic resonance imaging and high-resolution positron emission tomography demonstrate functional left-right asymmetry. Arch. Neurol. 52, 869–874 (1995).

    Article  CAS  Google Scholar 

  22. Lehéricy, S. et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54, 1625–1633 (2000).

    Article  Google Scholar 

  23. Fernández, G. et al. Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage 14, 585–594 (2001).

    Article  Google Scholar 

  24. Blank, S. C., Scott, S. K., Murphy, K., Warburton, E. & Wise, R. J. Speech production: Wernicke, Broca and beyond. Brain 125, 1829–1838 (2002).

    Article  Google Scholar 

  25. Crinion, J. T., Lambon-Ralph, M. A., Warburton, E. A., Howard, D. & Wise, R. J. S. Temporal lobe regions engaged during normal speech comprehension. Brain 126, 1193–1201 (2003).

    Article  Google Scholar 

  26. Josse, G. & Tzourio-Mazoyer, N. Hemispheric specialization for language. Brain Res. Rev. 44, 1–12 (2004).

    Article  Google Scholar 

  27. Ojemann, J. G., Ojemann, G. A. & Lettich, E. Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. J. Neurosurg. 97, 33–38 (2002).

    Article  Google Scholar 

  28. Rasmussen, T. M. in Cerebral Localization (eds Zulch, K. J., Creutzfeldt, O. & Galbraith, G. C.) 238–257 (Springer, Berlin, 1975).

    Book  Google Scholar 

  29. Wada, J. & Rasmussen, T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance: experimental and clinical observations. J. Neurosurg. 17, 266–282 (1960).

    Article  Google Scholar 

  30. Woermann, F. G. et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 61, 699–701 (2003).

    Article  CAS  Google Scholar 

  31. Hund-Georgiadis, M., Lex, U., Friederici, A. D. & von Cramon, D. Y. Non-invasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp. Brain Res. 145, 166–176 (2002).

    Article  Google Scholar 

  32. Papanicolaou, A. C. et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J. Neurosurg. 100, 867–876 (2004).

    Article  Google Scholar 

  33. Le Bihan, D. Looking into the functional architecture of the brain with diffusion MRI. Nature Rev. Neurosci. 4, 469–480 (2003).

    Article  CAS  Google Scholar 

  34. Ricci, P. E., Burdette, J. H., Elster, A. D. & Reboussin, D. M. A comparison of fast spin-echo, fluid-attenuated inversion-recovery, and diffusion-weighted MR imaging in the first 10 days after cerebral infarction. Am. J. Neuroradiol. 20, 1535–1542 (1999).

    CAS  PubMed  Google Scholar 

  35. Noguchi, K. et al. MRI of acute cerebral infarction: a comparison of FLAIR and T2- weighted fast spin-echo imaging. Neuroradiology 39, 406–410 (1997).

    Article  CAS  Google Scholar 

  36. Brant-Zawadzki, M., Atkinson, D., Detrick, M., Bradley, W. G. & Scidmore, G. Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction: initial clinical experience in 50 patients. Stroke 27, 1187–1191 (1996).

    Article  CAS  Google Scholar 

  37. Schaefer, P. W. et al. Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. Am. J. Neuroradiol. 23, 1785–1794 (2002).

    PubMed  Google Scholar 

  38. D'Esposito, M., Deouell, L. Y. & Gazzaley, A. Alterations in the bold fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Rev. Neurosci. 4, 863–872 (2003).

    Article  CAS  Google Scholar 

  39. Hillis, A. E. et al. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 125, 1094–1104 (2002).

    Article  CAS  Google Scholar 

  40. Poeck, K., De Bleser, R. & Graf von Keyserlingk, D. Neurolinguistic status and localization of lesion in aphasic patients with exclusively consonant-vowel recurring utterances. Brain 107, 199–217 (1984).

    Article  Google Scholar 

  41. Mohr, J. P. et al. Broca aphasia: pathologic and clinical. Neurology 28, 311–324 (1978).

    Article  CAS  Google Scholar 

  42. Willmes, K. & Poeck, K. To what extent can aphasic syndromes be localized. Brain 116, 1527–1540 (1993).

    Article  Google Scholar 

  43. Dronkers, N. F., Redfern, B. B. & Knight, R. T. in The New Cognitive Neurosciences (ed. Gazzaniga, M.) 949–958 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  44. Dronkers, N. F. A new brain region for coordinating speech articulation. Nature 384, 159–161 (1996).

    Article  CAS  Google Scholar 

  45. Blunk, R., De Bleser, R., Willmes, K. & Zeumer, H. A refined method to relate morphological and functional-aspects of aphasia. Eur. Neurol. 20, 69–79 (1981).

    Article  CAS  Google Scholar 

  46. Poeck, K., De Bleser, R. & Graf von Keyserlingk, D. Computed tomography localization of standard aphasic syndromes. Adv. Neurol. 42, 71–89 (1984).

    CAS  PubMed  Google Scholar 

  47. Weiller, C., Ringelstein, E. B., Reiche, W., Thron, A. & Buell, U. The large striatocapsular infarct: a clinical and pathophysiological entity. Arch. Neurol. 47, 1085–1091 (1990).

    Article  CAS  Google Scholar 

  48. Weiller, C. et al. The case of aphasia or neglect after striatocapsular infarction. Brain 116, 1509–1525 (1993).

    Article  Google Scholar 

  49. Adolphs, R., Damasio, H., Tranel, D., Cooper, G. & Damasio, A. R. A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J. Neurosci. 20, 2683–2690 (2000).

    Article  CAS  Google Scholar 

  50. Karnath, H. O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350–360 (2002).

    Article  Google Scholar 

  51. Rorden, C. & Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200 (2000).

    Article  Google Scholar 

  52. Frank, R. J., Damasio, H. & Grabowski, T. J. Brainvox: an interactive, multimodal visualization and analysis system for neuroanatomical imaging. Neuroimage 5, 13–30 (1997).

    Article  CAS  Google Scholar 

  53. Bates, E. et al. Voxel-based lesion-symptom mapping. Nature Neurosci. 6, 448–450 (2003).

    Article  CAS  Google Scholar 

  54. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  55. Yekutieli, D. & Benjamini, Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plan. Inf. 82, 171–196 (1999).

    Article  Google Scholar 

  56. Price, C. J. & Friston, K. J. Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–421 (2002).

    Article  Google Scholar 

  57. Husain, M. & Rorden, C. Non-spatially lateralized mechanisms in hemispatial neglect. Nature Rev. Neurosci. 4, 26–36 (2003).

    Article  CAS  Google Scholar 

  58. Pascual-Leone, A., Bartres-Faz, D. & Keenan, J. P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions'. Philos. Trans. R. Soc. Lond. B 354, 1229–1238 (1999).

    Article  CAS  Google Scholar 

  59. Walsh, V. & Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nature Rev. Neurosci. 1, 73–79 (2000).

    Article  CAS  Google Scholar 

  60. Sack, A. T. & Linden, D. E. Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res. Rev. 43, 41–56 (2003).

    Article  Google Scholar 

  61. Brett, M., Johnsrude, I. S. & Owen, A. M. The problem of functional localization in the human brain. Nature Rev. Neurosci. 3, 243–249 (2002).

    Article  CAS  Google Scholar 

  62. Brett, M., Leff, A. P., Rorden, C. & Ashburner, J. Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14, 486–500 (2001).

    Article  CAS  Google Scholar 

  63. Signoret, J. L., Castaigne, P., Lhermitte, F., Abelanet, R. & Lavorel, P. Rediscovery of Leborgne brain: anatomical description with CT scan. Brain Lang. 22, 303–319 (1984).

    Article  CAS  Google Scholar 

  64. Heilman, K. M., Watson, R. T., Valenstein, E. & Damasio, A. R. in Localization in Neuropsychology (ed. Kertesz, A.) 471–482 (Academic, New York, 1983).

    Google Scholar 

  65. Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

  66. Karnath, H. O., Fruhmann Berger, M., Küker, W. & Rorden, C. The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb. Cortex (in the press).

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health and the Deutsche Forschungsgemeinschaft. We would also like to thank M. Himmelbach for his insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Rorden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

Brain imaging as a diagnostic tool

Brain imaging: observing ongoing neural activity

Magnetic resonance imaging

Rorden's homepage

Karnath's homepage

VBM

VLSM

VAL: implemented in MRIcro

BrainVox

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rorden, C., Karnath, HO. Using human brain lesions to infer function: a relic from a past era in the fMRI age?. Nat Rev Neurosci 5, 812–819 (2004). https://doi.org/10.1038/nrn1521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing