Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Missense meanderings in sequence space: a biophysical view of protein evolution

Key Points

  • In addition to functional properties, proteins have a wide range of biophysical characteristics, such as stability, propensity for aggregation and rate of degradation. These properties are at least as important as function for cellular and organismal fitness.

  • Proteins tolerate only narrow ranges of stability, aggregation propensity and degradation rate. Many individual missense mutations perturb these traits by amounts that are on the same order as the permissible range of values, and are consequently common causes of human genetic disease.

  • The narrow range of tolerance of deviations from optimum characteristics and the significant effects of mutations give rise to a substantial degree of epistasis for fitness. Moreover, mutations simultaneously affect function, stability, aggregation and degradation. For these reasons, mutations might be selectively beneficial on some genetic backgrounds and deleterious on others.

  • Mutations that change function often do so at the cost of protein stability and aggregation. Compensatory mutations therefore function by relieving the biophysical strain that is introduced by adaptive mutations.

  • We propose a new model of protein evolution that is reminiscent of a constrained 'random walk' through fitness space, which is based on the fitness consequences and distribution of mutational effects on function, stability, aggregation and degradation.

  • This model can account for both the micro-evolutionary events that are studied by biochemists and the long-term patterns of protein evolution that are observed by evolutionary biologists.

Abstract

Proteins are finicky molecules; they are barely stable and are prone to aggregate, but they must function in a crowded environment that is full of degradative enzymes bent on their destruction. It is no surprise that many common diseases are due to missense mutations that affect protein stability and aggregation. Here we review the literature on biophysics as it relates to molecular evolution, focusing on how protein stability and aggregation affect organismal fitness. We then advance a biophysical model of protein evolution that helps us to understand phenomena that range from the dynamics of molecular adaptation to the clock-like rate of protein evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between protein stability, organismal fitness and protein evolution.
Figure 2: Two models for the occurrence of compensatory pathogenic deviations.

Similar content being viewed by others

References

  1. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  2. Blundell, T. L. & Wood, S. P. Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature 257, 197–203 (1975). The authors present the fundamental biochemical argument against the neutral theory of evolution.

    Article  CAS  PubMed  Google Scholar 

  3. Bazykin, G. A., Kondrashov, F. A., Ogurtsov, A. Y., Sunyaev, S. & Kondrashov, A. S. Positive selection at sites of multiple amino acid replacements since rat–mouse divergence. Nature 429, 558–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Sawyer, S. A., Kulathinal, R. J., Bustamante, C. D. & Hartl, D. L. Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J. Mol. Evol. 57 (Suppl. 1), 154–164 (2003).

    Article  CAS  Google Scholar 

  5. Gillespie, J. H. The Causes of Molecular Evolution (Oxford Univ. Press, Oxford, 1991). This is a fantastic discussion of the problems of protein evolution from an eminent population geneticist.

    Google Scholar 

  6. Poon, A. & Chao, L. The rate of compensatory mutation in the DNA bacteriophage ϕX174. Genetics 23 May 2005 (10.1534/genetics.104.039438).

  7. Poon, A., Davis, B. H. & Chao, L. The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood. Genetics 6 May 2005 (10.1534/genetics.104.037259).

  8. Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002). This paper describes the role of biochemistry in the evolution of antibiotic resistance genes.

    Article  CAS  PubMed  Google Scholar 

  9. Kondrashov, A. S., Sunyaev, S. & Kondrashov, F. A. Dobzhansky–Muller incompatibilities in protein evolution. Proc. Natl Acad. Sci. USA 99, 14878–14883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003). This is an introduction to protein aggregation and disease.

    Article  CAS  PubMed  Google Scholar 

  11. Beadle, B. M. & Shoichet, B. K. Structural bases of stability–function tradeoffs in enzymes. J. Mol. Biol. 321, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Shoichet, B. K., Baase, W. A., Kuroki, R. & Matthews, B. W. A relationship between protein stability and protein function. Proc. Natl Acad. Sci. USA 92, 452–456 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bull, J. J., Badgett, M. R. & Wichman, H. A. Big-benefit mutations in a bacteriophage inhibited with heat. Mol. Biol. Evol. 17, 942–950 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Wilson, K. P., Malcolm, B. A. & Matthews, B. W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J. Biol. Chem. 267, 10842–10849 (1992).

    CAS  PubMed  Google Scholar 

  15. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J. & King, J. Global suppression of protein folding defects and inclusion body formation. Science 253, 54–58 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Zwanzig, R. Two-state models of protein folding kinetics. Proc. Natl Acad. Sci. USA 94, 148–150 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Plaxco, K. W., Simons, K. T., Ruczinski, I. & Baker, D. Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochem. 39, 11177–11183 (2000).

    Article  CAS  Google Scholar 

  18. Pace, C. N. The stability of globular proteins. CRC Crit. Rev. Biochem. 3, 1–43 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Creighton, T. E. Proteins: Structures and Molecular Properties (W. H. Freeman and Company, New York, 1993).

    Google Scholar 

  20. Chiti, F. et al. Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J. 19, 1441–1449 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Berg, B., Ellis, R. J. & Dobson, C. M. Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 18, 6927–6933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pawar, A. P. et al. Prediction of 'aggregation-prone' and 'aggregation-susceptible' regions in proteins associated with neurodegenerative diseases. J. Mol. Biol. 350, 379–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C. M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805–808 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nature Struct. Biol. 9, 137–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Ramirez-Alvarado, M., Merkel, J. S. & Regan, L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc. Natl Acad. Sci. USA 97, 8979–8984 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Georgiou, G., Valax, P., Ostermeier, M. & Horowitz, P. M. Folding and aggregation of TEM β-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein Sci. 3, 1953–1960 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Phys. Rev. 82, 373–428 (2002).

    CAS  Google Scholar 

  30. Parsell, D. A. & Sauer, R. T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J. Biol. Chem. 264, 7590–7595 (1989).

    CAS  PubMed  Google Scholar 

  31. Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003). The author provides an introduction to protein degradation and disease.

    Article  CAS  PubMed  Google Scholar 

  32. Gregersen, N., Bross, P., Jorgensen, M. M., Corydon, T. J. & Andresen, B. S. Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders. J. Inherit. Metab. Dis. 23, 441–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Pakula, A. A. & Sauer, R. T. Genetic analysis of protein stability and function. Annu. Rev. Genet. 23, 289–310 (1989). This is an excellent review of mutational effects on protein stability.

    Article  CAS  PubMed  Google Scholar 

  34. Fields, P. A. Review: Protein function at thermal extremes: balancing stability and flexibility. Comp. Biochem. Physiol. A 129, 417–431 (2001).

    Article  CAS  Google Scholar 

  35. Daniel, R. M., Dunn, R. V., Finney, J. L. & Smith, J. C. The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32, 69–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Somero, G. N. Proteins and temperature. Annu. Rev. Physio. 57, 43–68 (1995). This paper describes the adaptation of proteins to environmental temperature.

    Article  CAS  Google Scholar 

  37. Fink, A. L. Natively unfolded proteins. Curr. Opin. Struct. Biol. 15, 35–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ferrer, M., Chernikova, T. N., Yakimov, M. M., Golyshin, P. N. & Timmis, K. N. Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnol. 21, 1266–1267 (2003).

    Article  CAS  Google Scholar 

  39. Daopin, S., Alber, T., Baase, W. A., Wozniak, J. A. & Matthews, B. W. Structural and thermodynamic analysis of the packing of two α-helices in bacteriophage T4 lysozyme. J. Mol. Biol. 221, 647–667 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Green, S. M. & Shortle, D. Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease. Biochem. 32, 10131–10139 (1993).

    Article  CAS  Google Scholar 

  41. Matthews, B. W. Studies on protein stability with T4 lysozyme. Adv. Protein Chem. 46, 249–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Milla, M. E., Brown, B. M. & Sauer, R. T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nature Struct. Biol. 1, 518–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Pakula, A. A. & Sauer, R. T. Amino acid substitutions that increase the thermal stability of the λCro protein. Proteins 5, 202–210 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Shortle, D. Probing the determinants of protein folding and stability with amino acid substitutions. J. Biol. Chem. 264, 5315–5318 (1989).

    CAS  PubMed  Google Scholar 

  45. Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Fersht, A. R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Alber, T. Mutational effects on protein stability. Annu. Rev. Biochem. 58, 765–798 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Schultz, S. C. & Richards, J. H. Site-saturation studies of β-lactamase: production and characterization of mutant β-lactamases with all possible amino acid substitutions at residue 71. Proc. Natl Acad. Sci. USA 83, 1588–1592 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pakula, A. A., Young, V. B. & Sauer, R. T. Bacteriophage λcro mutations: effects on activity and intracellular degradation. Proc. Natl Acad. Sci. USA 83, 8829–8833 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosen, R. et al. Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol. Lett. 207, 9–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Calloni, G., Zoffoli, S., Stefani, M., Dobson, C. M. & Chiti, F. Investigating the effects of mutations on protein aggregation in the cell. J. Biol. Chem. 280, 10607–10613 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnol. 22, 1302–1306 (2004).

    Article  CAS  Google Scholar 

  53. Broome, B. M. & Hecht, M. H. Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J. Mol. Biol. 296, 961–968 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Ventura, S. et al. Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc. Natl Acad. Sci. USA. 101, 7258–7263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zavodszky, P., Kardos, J., Svingor, A. & Petsko, G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl Acad. Sci. USA 95, 7406–7411 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fersht, A. R. Structure and Mechanism in Protein Science: a Guide to Enzyme Catalysis and Protein Folding (W. H. Freeman, New York, 1999).

    Google Scholar 

  57. Kelly, J. W. & Balch, W. E. Amyloid as a natural product. J. Cell Biol. 161, 461–462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perl, D., Mueller, U., Heinemann, U. & Schmid, F. X. Two exposed amino acid residues confer thermostability on a cold shock protein. Nature Struct. Biol. 7, 380–383 (2000). This article demonstrates the stabilizing effect of mutations during thermoadaptation.

    Article  CAS  PubMed  Google Scholar 

  59. Perl, D. & Schmid, F. X. Some like it hot: the molecular determinants of protein thermostability. Chembiochem 3, 39–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Wagner, G. P. & Gabriel, W. Quantitative variation in finite parthenogenetic populations: what stops Muller's ratchet in the absence of recombination? Evolution 44, 715–731 (1990).

    Article  PubMed  Google Scholar 

  61. Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond. B 264, 1287–1291 (1997).

    Article  CAS  Google Scholar 

  62. Maisnier-Patin, S., Berg, O. G., Liljas, L. & Andersson, D. I. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46, 355–366 (2002). This paper describes the fitness costs of streptomycin resistance and the compensatory mutations that are involved.

    Article  CAS  PubMed  Google Scholar 

  63. Poteete, A. R., Rennell, D., Bouvier, S. E. & Hardy, L. W. Alteration of T4 lysozyme structure by second-site reversion of deleterious mutations. Protein Sci. 6, 2418–2425 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shortle, D. & Lin, B. Genetic analysis of staphylococcal nuclease: identification of three intragenic 'global' suppressors of nuclease-minus mutations. Genetics 110, 539–555 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mitraki, A., Danner, M., King, J. & Seckler, R. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro. J. Biol. Chem. 268, 20071–20075 (1993).

    CAS  PubMed  Google Scholar 

  66. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154, 985–997 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Bjorkman, J., Hughes, D. & Andersson, D. I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl Acad. Sci. USA 95, 3949–3953 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burch, C. L. & Chao, L. Evolution by small steps and rugged landscapes in the RNA virus φ6. Genetics 151, 921–927 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kulathinal, R. J., Bettencourt, B. R. & Hartl, D. L. Compensated deleterious mutations in insect genomes. Science 306, 1553–1554 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Sideraki, V., Huang, W., Palzkill, T. & Gilbert, H. F. A secondary drug resistance mutation of TEM-1 β-lactamase that suppresses misfolding and aggregation. Proc. Natl Acad. Sci. USA 98, 283–288 (2001).

    CAS  PubMed  Google Scholar 

  72. Kim, H. W. et al. Restoring allosterism with compensatory mutations in hemoglobin. Proc. Natl Acad. Sci. USA 91, 11547–11551 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mateu, M. G. & Fersht, A. R. Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc. Natl Acad. Sci. USA 96, 3595–3599 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Borman, A. M., Paulous, S. & Clavel, F. Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. J. Gen. Virol. 77, 419–426 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nature Rev. Genet. 4, 263–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26, 348–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005).

    CAS  PubMed  Google Scholar 

  79. Bloom, J. D. et al. Thermodynamic prediction of protein neutrality. Proc. Natl Acad. Sci. USA 102, 606–611 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bastolla, U., Roman, H. E. & Vendruscolo, M. Neutral evolution of model proteins: diffusion in sequence space and overdispersion. J. Theor. Biol. 200, 49–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Wright, S. in Proc. 6th Int. Congr. Genet. (ed. Jones, D. F.) 356–366 (Brooklyn Botanic Garden, Menasha, Wisconsin, 1932).

    Google Scholar 

  82. Stephan, W. The rate of compensatory evolution. Genetics 144, 419–426 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins, a Symposium (eds Bryson, V. & Vogel, H.) 97–166 (Academic Press, New York, 1965).

    Book  Google Scholar 

  84. Wilson, A. C., Carlson, S. S. & White, T. J. Biochemical evolution. Annu. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  PubMed  Google Scholar 

  85. Ohta, T. & Kimura, M. On the constancy of the evolutionary rate of cistrons. J. Mol. Evol. 1, 18–25 (1971).

    Article  CAS  Google Scholar 

  86. Langley, C. H. & Fitch, W. M. An examination of the constancy of the rate of molecular evolution. J. Mol. Evol. 3, 162–177 (1974).

    Article  Google Scholar 

  87. Cutler, D. J. Understanding the overdispersed molecular clock. Genetics 154, 1403–1417 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gillespie, J. H. Molecular evolution over the mutational landscape. Evolution 38, 1116–1129 (1984). This is the first rigorous treatment of sequence evolution through complex fitness landscapes.

    Article  CAS  PubMed  Google Scholar 

  89. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Smith, N. G. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature 415, 1022–1024 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Orr, A. H. The genetic theory of adaptation: a brief history. Nature Rev. Genet. 6, 119–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Hartl, D. L., Dykhuizen, D. E. & Dean, A. M. Limits of adaptation: the evolution of selective neutrality. Genetics 111, 655–674 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Maynard Smith, J. Natural selection and the concept of a protein space. Nature 225, 563–565 (1974).

    Article  Google Scholar 

  94. Kimura, M. The role of compensatory neutral mutations in molecular evolution. J. Genet. 64, 7–19 (1985).

    Article  CAS  Google Scholar 

  95. Carter, A. J. R. & Wagner, G. P. Evolution of functionally conserved enhancers can be accelerated in large populations: a population-genetic model. Proc. R. Soc. Lond. B 269, 953–960 (2002).

    Article  Google Scholar 

  96. Weinreich, D. M. & Chao, L. Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution 59, 1175–1182 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Bross, P. et al. Protein misfolding and degradation in genetic diseases. Human Mut. 14, 186–198 (1999).

    Article  CAS  Google Scholar 

  98. Pedersen, C. B. et al. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency. J. Biol. Chem. 278, 47449–47458 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Haass, C. & Steiner, H. Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol. 12, 556–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Aguzzi, A. & Haass, C. Games played by rogue proteins in prion disorders and Alzheimer's disease. Science 302, 814–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Sherman, M. Y. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A. L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 14, 95–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Eaton, W. A. & Hofrichter, J. Sickle cell hemoglobin polymerization. Adv. Protein Chem. 40, 63–279 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.A.D. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation. D.M.W. and D.L.H. thank the National Science Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. DePristo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

Alzheimer

Huntington

Glossary

FIXATION

A mutation that has achieved a frequency of 100% in a natural population.

ADAPTIVE EVOLUTION

A genetic change that results in increased fitness.

FITNESS

A measure of the capacity of an organism to survive and reproduce.

β SHEET

A secondary protein structure that has extensive, non-local hydrogen bonding.

CHAPERONES

A large class of cellular proteins that help other proteins to fold into their correct native conformation.

INCLUSION BODIES

Insoluble aggregates of misfolded proteins; inclusion bodies are common in prokaryotes.

UBIQUITIN–PROTEASOME PATHWAY

A eukaryotic degradation system in which ubiquitin molecules are attached to a target protein that is subsequently degraded by the proteasome complex.

EFFECTIVE CONCENTRATION

The concentration of functional molecules, as opposed to the total concentration of molecules.

NATIVELY UNFOLDED

Describes a class of proteins that are unfolded under physiological conditions.

POIKILOTHERMIC ORGANISM

An organism in which body temperature fluctuates with environmental temperature.

EXTREMOPHILE

An organism that thrives in environments that are inhospitable to most other organisms such as extreme heat (thermophiles), salinity (halophiles) and pressure (barophiles).

EPISTASIS

This occurs when the effect of a mutation varies with genetic background.

AMYLOIDOGENIC

Describes a protein that forms amyloid fibrils — a large, extended conformation that is adopted by many aggregated proteins. Amyloid fibrils are characteristic of several neurological disorders.

ORTHOLOGOUS PROTEINS

Proteins corresponding to genes that are related through speciation. By contrast, paralogous proteins are related by gene duplication.

GENETIC DRIFT

The stochastic variation in population frequency of a mutation that is due to the sampling process inherent in reproduction.

FITNESS VALLEY

The circumstance in which mutations individually reduce fitness while jointly increasing it, so that when fitness is represented graphically, these single mutants form a valley.

NON-MONOTONIC

A function in which the first derivative changes sign. Here this indicates that fitness decreases with departure from an optimal stability.

STABILIZING SELECTION

Selection that maintains a phenotype at some intermediate value.

LATTICE MODEL

An abstract model for protein folding in which a protein chain is constrained to occupy discrete points on a regular two- or three-dimensional lattice.

POPULATION DELOCALIZATION

A mechanism by which large populations can traverse fitness valleys without the fixation of deleterious mutational intermediates.

MOLECULAR CLOCK

The constant (clock-like) rate of missense fixation over evolutionary timescales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DePristo, M., Weinreich, D. & Hartl, D. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 6, 678–687 (2005). https://doi.org/10.1038/nrg1672

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing