Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Telomere maintenance as a target for anticancer drug discovery

Key Points

  • The ends of the chromosomes in all eukaryotic species have specialized, non-coding DNA sequences that, together with associated proteins, are known as telomeres. These have developed to protect the chromosome ends from a range of otherwise catastrophic events.

  • Telomeric DNA comprises simple tandem repeats of guanine-rich sequences, typified by the hexanucleotide repeat d(TTAGGG)n in vertebrates. The extreme 3′ end of eukaryotic telomeric DNA is single-stranded, typically being 100–200 bases long.

  • In normal cells, telomeres progressively decrease in length with each successive round of cell division owing to the inability of endogenous DNA polymerase to fully replicate the lagging telomeric DNA strand. Once a critical level of telomere shortening is reached, cells enter an irreversible phase of growth arrest, when they cease to divide and might then be directed to apoptotic cell death.

  • In striking contrast, telomeres of cancer cells do not shorten on replication, but remain constant in length on succeeding generations owing to the activity of the enzyme telomerase, an RNA-dependent DNA polymerase that uses its own associated RNA template to catalyse the addition of telomeric DNA repeats to the 3′ end of the single-stranded DNA telomere.

  • Telomerase is not expressed in normal human tissue, but is present in at least 80–85% of tumour cells, suggesting it might be both a diagnostic marker and a target for the design of broad-spectrum anti-cancer drugs. Proof-of-principle experiments have shown that telomerase inhibition leads to telomere length reduction, tumour-cell senescence and ultimately apoptosis.

  • Three approaches to telomerase inhibition are the subject of current investigation: targeting the active site of the polymerase with small molecules; antisense oligonucleotides directed at the RNA template; and stabilization of the single-stranded telomeric DNA into quadruplex structures formed from stacked guanine quartets, which prevents the necessary hybridization to the RNA template.

  • Owing to their mode of action, quadruplex-binding ligands might offer the advantages of rapid onset of action, and activity against the 15% of tumour cells that maintain their telomeres through a telomerase-independent mechanism.

Abstract

Maintenance of telomeres — specialized complexes that protect the ends of chromosomes — is undertaken by the enzyme complex telomerase, which is a key factor that is activated in more than 80% of cancer cells that have been examined so far, but is absent in most normal cells. So, targeting telomere-maintenance mechanisms could potentially halt tumour growth across a broad spectrum of tumour types, with little cytotoxic effect outside tumours. Here, we describe the current understanding of telomere biology, and the application of this knowledge to the development of anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic view of the t-loop structure of human telomeres.
Figure 2: The folding of telomeric DNA: guanine quadruplexes.
Figure 3: Telomere elongation by telomerase and its inhibition.
Figure 4: Structures of various telomerase inhibitors.
Figure 5: G-quadruplexes and telomerase inhibition.
Figure 6: Structure-based design of G-quadruplex ligands.

Similar content being viewed by others

References

  1. Sahai, E. & Marshall, J. C. RHO-GTPases and cancer. Nature Rev. Cancer 2, 133–142 (2002).

    Article  Google Scholar 

  2. Pines, J. Four-dimensional control of the cell cycle. Nature Cell Biol. 1, E73–E79 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. McElligott, R. & Wellinger, R. J. The terminal DNA structure of mammalian chromosomes. EMBO J. 16, 3705–3714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huffman, K. E., Levene, S. D., Tesmer, V. M., Shay, J. W. & Wright, W. E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem. 275, 19719–19722 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D. & Shay, J. W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Baumann, P. & Cech, T. R. POT1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).Characterization of an end-capping protein, and investigation of its homology with other telomere-associated proteins.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Simonsson, T. G-quadruplex DNA structures — variations on a theme. Biol. Chem. 382, 621–628 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kerwin, S. M. G-quadruplex DNA as a target for drug design. Curr. Pharm. Des. 6, 441–478 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, N. W. et al. Specific association of human telomerase activity with immortal cell and cancer. Science 266, 2011–2015 (1994). The key demonstration that a wide range of human cancers have a high proportion with elevated levels of expressed telomerase.

    Article  CAS  PubMed  Google Scholar 

  14. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985). The first characterization of the telomerase enzyme from any species.

    Article  CAS  PubMed  Google Scholar 

  15. Keith, W. N., Evans, T. R. & Glasspool, R. M. Telomerase and cancer: time to move from a promising target to a clinical reality. J. Pathol. 195, 404–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bryan, T. M. & Cech, T. R. Telomerase and maintenance of chromosome ends. Curr. Opin. Cell Biol. 11, 318–324 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995). Characterization of the RNA domain of human telomerase.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, J. L., Blasco, M. A. & Greider, C. W. Secondary structure of vertebrate telomerase RNA. Cell 100, 503–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999). Visualization using electron microscopy, showing that telomeres can form a loop structure.

    Article  CAS  PubMed  Google Scholar 

  21. Stansel, R. M., de Lange, T. & Griffith, J. D. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 20, 5532–5540 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li., B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 417–483 (2000).

    Google Scholar 

  23. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Kaminker, P. G. et al. TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J. Biol. Chem. 276, 35891–35899 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nature Genet. 23, 405–412 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Forsythe, H. L., Jarvis, J. L., Turner, J. W., Elmore, L. W. & Holt, S. E. Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J. Biol. Chem. 276, 15571–15574 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hsu, H. L. et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 14, 2807–2812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nature Genet. 21, 220–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Simonsson, T. & Henriksson, M. c-myc Suppression in Burkitt's lymphoma cells. Biochem. Biophys. Res. Commun. 290, 11–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Rangan, A., Fedoroff, O. Y. & Hurley, L. H. Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J. Biol. Chem. 276, 4640–4646 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Hahn, W. C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5, 1164–1170 (1999). Proof-of-principle experiments that show that inhibition of telomerase, using a dominant-negative mutant, results in telomere shortening and cellular senescence.

    Article  CAS  PubMed  Google Scholar 

  34. Shammas, M. A., Simmons, C. G., Corey, D. R. & Shmookler Reis, R. J. Telomerase inhibition by peptide nucleic acids reverses 'immortality' of transformed human cells. Oncogene 18, 6191–6200 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Herbert, B. S. et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl Acad. Sci. USA 96, 14276–14281 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Dunham, M. A., Neumann, A. A., Fasching, C. L. & Reddel, R. R. Telomere maintenance by recombination in human cells. Nature Genet. 26, 447–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, H., Karow, J. K., Hickson, I. D. & Maizels, N. The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27587–27592 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Li, J. L. et al. Inhibition of the Bloom's and Werner's syndrome helicases by G-quadruplex interacting ligands. Biochemistry 40, 15194–15202 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Damm, K. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20, 6958–6968 (2001). A detailed account of telomerase inhibition by a small molecule that acts as a catalytic inhibitor of the reverse transcriptase active site, including demonstration of telomere shortening and an antitumour effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pascolo, E. et al. Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J. Biol. Chem. 19 Feb 2002 [e-pub ahead of print].

  42. Hamilton, S. E. et al. Identification of determinants for inhibitor binding within the RNA active site of human telomerase using PNA scanning. Biochemistry 36, 11873–11880 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Pitts, A. E. & Corey, D. R. Inhibition of human telomerase by 2′-O-methyl-RNA. Proc. Natl Acad. Sci. USA 95, 11549–11554 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elayadi, A. N., Demieville, A., Wancewicz, E. V., Monia, B. P. & Corey, D. R. Inhibition of telomerase by 2′-O-(2-methoxyethyl) RNA oligomers: effect of length, phosphorothioate substitution and time inside cells. Nucleic Acids Res. 29, 1683–1689 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Han, H. & Hurley, L. H. G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol. Sci. 21, 136–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Mergny, J. L. & Helene, C. G-quadruplex DNA: a target for drug design. Nature Med. 12, 1366–1367 (1998).

    Article  Google Scholar 

  48. Koeppel, F. et al. Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes. Nucleic Acids Res. 29, 1087–1096 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Read, M. et al. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl Acad. Sci. USA 98, 4844–4849 (2001).Rational design of telomerase inhibitors has produced molecules with nanomolar potency, based on molecular-modelling studies using native quadruplex structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mergny, J. L. et al. Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc. Natl Acad. Sci. USA 98, 3062–3067 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mergny, J. L. & Maurizot, J. C. Fluorescence resonance energy transfer as a probe for G-quartet formation by a telomeric repeat. ChemBioChem 2, 124–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. McEachern, M. J., Lyer, S., Fulton, T. B. & Blackburn, E. H. Telomere fusions caused by mutating the terminal region of telomeric DNA. Proc. Natl Acad. Sci. USA 97, 11409–11414 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gowan, S. M. et al. A G-quadruplex-interactive potent small molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol. Pharmacol. (in the press).

  54. Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Guo, Q., Lu, M., Marky, L. A. & Kallenbach, N. R. Interaction of the dye ethidium bromide with DNA containing guanine repeats. Biochemistry 31, 2451–2455 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Sun, D. et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113-2116 (1997). The first demonstration of telomerase inhibition by a quadruplex-interactive molecule.

  57. Izbicka, E. et al. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 59, 639–644 (1999).

    CAS  PubMed  Google Scholar 

  58. Shi, D. F., Wheelhouse, R. T., Sun, D. & Hurley, L. H. Quadruplex-interactive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J. Med. Chem. 44, 4509–4523 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Wheelhouse, R. T., Sun, D., Han, H., Han, F. X. & Hurley, L. H. Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA. J. Am. Chem. Soc. 120, 3261–3262 (1998).

    Article  CAS  Google Scholar 

  60. Gowan, S. M., Heald, R., Stevens, M. F. & Kelland, L. R. Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol. Pharmacol. 60, 981–988 (2001). A novel quadruplex-binding telomerase inhibitor that produces senescence in long-term cell culture.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y. & Patel, D. J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1, 263–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Harrison, R. J., Gowan, S. M., Kelland, L. R. & Neidle, S. Human telomerase inhibition by substituted acridine derivatives. Bioorg. Med. Chem. Lett. 9, 2463–2468 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Han, H., Cliff, C. L. & Hurley, L. H. Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry 38, 6981–6986 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Fedoroff, O. Y. et al. NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. Biochemistry 37, 12367–12374 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Kerwin, S. M., Chen, G., Kern, J. T. & Thomas, P. W. Perylene diimide G-quadruplex DNA binding selectivity is mediated by ligand aggregation. Bioorg. Med. Chem. Lett. 12, 447–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Tuntiwechapikul, W. & Salazar, M. Cleavage of telomeric G-quadruplex DNA with perylene-EDTA*Fe(II). Biochemistry 40, 13652–13658 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Q., Kuntz, I. D. & Shafer, R. H. Spectroscopic recognition of guanine dimeric hairpin quadruplexes by a carbocyanine dye. Proc. Natl Acad. Sci. USA 93, 2635–2639 (1996). The use of virtual library screening to find a quadruplex-binding molecule.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kerwin, S. M. et al. G-quadruplex binding by a series of carbocyanine dyes. Bioorg. Med. Chem. Lett. 11, 2411–2414 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Riou, J. F. et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl Acad. Sci. USA 99, 2672–2677 (2002). Demonstration that quadruplex-interactive telomerase inhibitors can produce telomere shortening in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shin-ya, K. et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J. Am. Chem. Soc. 123, 1262–1263 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, M. Y. et al. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J. Am. Chem. Soc. 124, 2098–2099 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Buchdunger, E., Matter, A. & Druker, B. J. Bcr–Abl inhibition as a modality of CML therapeutics. Biochim. Biophys. Acta. 1551, M11–M18 (2001).

    CAS  PubMed  Google Scholar 

  73. Sun, D., Hurley, L. H. & Von Hoff, D. D. Telomerase assay using biotinylated-primer extension and magnetic seperation of the products. Biotechniques 25, 1046–1051 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Perry, P. J. et al. 2,7-disubstituted amidofluorenone derivatives as inhibitors of human telomerase. J. Med. Chem. 42, 2679–2684 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Perry, P. J. et al. Human telomerase inhibition by regioisomeric disubstituted amidoanthracene-9,10-diones. J. Med. Chem. 41, 4873–4884 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Read, M. A. & Neidle, S. Structural characterization of a guanine-quadruplex ligand complex. Biochemistry 39, 13422–13432 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Gavathiotis, E., Heald, R. A., Stevens, F. G. & Searle, M. S. Recognition and stabilization of quadruplex DNA by a potent new telomerase inhibitor: NMR studies of the 2:1 complex of a pentacyclic methylacridinium cation with d(TTAGGGT)4 . Angew. Chem. Int. Ed. 40, 4749–4751 (2001). An NMR study of quadruplex binding to a novel potent telomerase inhibitor, which demonstrates stacking onto the ends of the quadruplex.

    Article  CAS  Google Scholar 

  78. Han, H., Langley, D. R., Rangan, A. & Hurley, L. H. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc. 123, 8902–8913 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Read, M. A. et al. Molecular modeling studies on G-quadruplex complexes of telomerase inhibitors: structure–activity relationships. J. Med. Chem. 42, 4538–4546 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Bearss, D. J., Hurley, L. H. & Von Hoff, D. D. Telomere maintenance mechanisms as a target for drug development. Oncogene 19, 6632–6641 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Read for providing Figure 6, G. Chessan, S. Haider and C. Schultze for stimulating discussions, and Cancer Research UK for support of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Neidle.

Related links

Related links

DATABASES

LocusLink

ABL

ATM

BCR

DNA topoisomerase I

DNA topoisomerase II

HSP90

hTERT

hTR

HUS1

MAD1

MAX

MYC

p16

p53

RAD1

RAD9

Rb

Pot1

RAP1

SP1

TIN2

TNKS1

TNKS2

TRF1

TRF2

WT1

Medscape DrugInfo

Gleevec

Cancer.gov

breast cancer

cervical cancer

chronic myelogenous leukaemia

prostate cancer

<i>Saccharomyces</i> Genome Database

Cdc13

OMIM

Chronic myeloid leukaemia

Glossary

TOPOISOMERASE

An enzyme that changes DNA supercoiling by inserting or removing superhelical twists.

APOPTOSIS

Programmed cell death.

CHAPERONE

A protein that facilitates the proper folding of other proteins but does not bind to their final folded form.

DOMINANT-NEGATIVE

A defective protein that retains interaction capabilities and so distorts or competes with normal proteins.

HELICASE

An enzyme that separates the two DNA strands in a double helix, which results in the formation of regions of single-stranded DNA.

INTERCALATION

The insertion of a molecule (which is typically flat and aromatic) between adjacent base pairs of DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neidle, S., Parkinson, G. Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1, 383–393 (2002). https://doi.org/10.1038/nrd793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing