Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct measurement of the propagation velocity of defects using coherent X-rays

Abstract

The properties of artificially grown thin films are often strongly affected by the dynamic relationships between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during real-time studies of sputter deposition of a-Si and a-WSi2 films by controlling the X-ray penetration and escape depths in coherent grazing-incidence small-angle X-ray scattering. Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interference between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upwards at the same velocity as the surface. Furthermore, a highly surface-sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experiment and coherent mixing effects.
Figure 2: Static intensities during steady-state growth.
Figure 3: Identification of heterodyne and homodyne mixing.
Figure 4: Measurement of the surface velocity from the heterodyne period.
Figure 5: Control of the homodyne mixing ratio by varying the exit angle.

Similar content being viewed by others

References

  1. Sinha, S. K., Jiang, Z. & Lurio, L. B. X-ray photon correlation spectroscopy studies of surfaces and thin films. Adv. Mater. 26, 7764–7785 (2014).

    Google Scholar 

  2. Pierce, M. S. et al. Surface X-Ray speckles: coherent surface diffraction from Au(001). Phys. Rev. Lett. 103, 165501 (2009).

    ADS  Google Scholar 

  3. Kim, H. et al. Surface dynamics of polymer films. Phys. Rev. Lett. 90, 068302 (2003).

    ADS  Google Scholar 

  4. Ohnesorge, F. & Binnig, G. True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260, 1451–1456 (1993).

    ADS  Google Scholar 

  5. Bauer, E. Low-energy-electron microscopy. Rep. Progress Phys. 57, 895–938 (1994).

    ADS  Google Scholar 

  6. Leslie, C. et al. Electron crystallography in surface structure analysis. Microsc. Res. Tech. 46, 160–177 (1999).

    Google Scholar 

  7. Bein, B. et al. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices. Nature Commun. 6, 10136 (2015).

    ADS  Google Scholar 

  8. Pfeiffer, F., Zhang, W. & Robinson, I. K. Coherent grazing exit X-ray scattering geometry for probing the structure of thin films. Appl. Phys. Lett. 84, 1847–1849 (2004).

    ADS  Google Scholar 

  9. Ferguson, J. D. et al. Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films. Adv. Mater. 23, 1226–1230 (2011).

    Google Scholar 

  10. Matthews, J. & Blakeslee, A. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

    ADS  Google Scholar 

  11. Warren, W. L., Vanheusden, K., Dimos, D., Pike, G. E. & Tuttle, B. A. Oxygen vacancy motion in perovskite oxides. J. Am. Ceram. Soc. 79, 536–538 (1996).

    Google Scholar 

  12. Jiang, W. et al. Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen-migration-based resistance switching. J. Appl. Phys. 110, 034509 (2011).

    ADS  Google Scholar 

  13. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004).

    ADS  Google Scholar 

  14. Nakahara, S. Microporosity induced by nucleation and growth processes in crystalline and non-crystalline films. Thin Solid Films 45, 421–432 (1977).

    ADS  Google Scholar 

  15. Als-Nielsen, J. & McMorrow, D. Elements of Modern X-ray Physics (Wiley, 2001).

    Google Scholar 

  16. Robinson, I. K. & Tweet, D. J. Surface X-ray-diffraction. Rep. Progress Phys. 55, 599–651 (1992).

    ADS  Google Scholar 

  17. Sinha, S. K., Sirota, E. B., Garoff, S. & Stanley, H. B. X-ray and neutron-scattering from rough surfaces. Phys. Rev. B 38, 2297–2311 (1988).

    ADS  Google Scholar 

  18. Brauer, S. et al. X-ray-intensity fluctuation spectroscopy observations of critical-dynamics in Fe3Al. Phys. Rev. Lett. 74, 2010–2013 (1995).

    ADS  Google Scholar 

  19. Chu, B. et al. An X-ray photon-correlation experiment. Langmuir 11, 1419–1421 (1995).

    Google Scholar 

  20. Dierker, S. B., Pindak, R., Fleming, R. M., Robinson, I. K. & Berman, L. X-ray photon-correlation spectroscopy study of Brownian-motion of gold colloids in glycerol. Phys. Rev. Lett. 75, 449–452 (1995).

    ADS  Google Scholar 

  21. Mochrie, S. G. J. et al. Dynamics of block copolymer micelles revealed by X-ray intensity fluctuation spectroscopy. Phys. Rev. Lett. 78, 1275–1278 (1997).

    ADS  Google Scholar 

  22. Sutton, M. et al. Observation of speckle by diffraction with coherent X-rays. Nature 352, 608–610 (1991).

    ADS  Google Scholar 

  23. Thurn-Albrecht, T. et al. Photon correlation spectroscopy of colloidal palladium using a coherent X-ray beam. Phys. Rev. Lett. 77, 5437–5440 (1996).

    ADS  Google Scholar 

  24. Tsui, O. K. C. & Mochrie, S. G. J. Dynamics of concentrated colloidal suspensions probed by X-ray correlation spectroscopy. Phys. Rev. E 57, 2030–2034 (1998).

    ADS  Google Scholar 

  25. Lumma, D., Lurio, L. B., Mochrie, S. G. J. & Sutton, M. Area detector based photon correlation in the regime of short data batches: data reduction for dynamic X-ray scattering. Rev. Sci. Instrum. 71, 3274–3289 (2000).

    ADS  Google Scholar 

  26. Willmott, P. R. et al. Structural basis for the conducting interface between LaAlO3 and SrTiO3 . Phys. Rev. Lett. 99, 155502 (2007).

    ADS  Google Scholar 

  27. Zubko, P. et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Lett. 12, 2846–2851 (2012).

    ADS  Google Scholar 

  28. Joyce, B. A. & Joyce, T. B. Basic studies of molecular beam epitaxy—past, present and some future directions. J. Cryst. Growth 264, 605–619 (2004).

    ADS  Google Scholar 

  29. Krug, K., Stettner, J. & Magnussen, O. M. In situ surface X-ray diffraction studies of homoepitaxial electrochemical growth on Au(100). Phys. Rev. Lett. 96, 246101 (2006).

    ADS  Google Scholar 

  30. Gutt, C. et al. Observation of heterodyne mixing in surface X-ray photon correlation spectroscopy experiments. Phys. Rev. Lett. 91, 076104 (2003).

    ADS  Google Scholar 

  31. Orsi, D., Cristofolini, L., Baldi, G. & Madsen, A. Heterogeneous and anisotropic dynamics of a 2D gel. Phys. Rev. Lett. 108, 105701 (2012).

    ADS  Google Scholar 

  32. Livet, F. et al. X-ray intensity fluctuation spectroscopy by heterodyne detection. J. Synchrotron Radiat. 13, 453–458 (2006).

    Google Scholar 

  33. Family, F. & Vicsek, T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A 18, L75–L81 (1985).

    ADS  Google Scholar 

  34. Vicsek, T. & Family, F. Dynamic scaling for aggregation of clusters. Phys. Rev. Lett. 52, 1669–1672 (1984).

    ADS  Google Scholar 

  35. Zhou, L. et al. Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: effect on WSi2 film roughness and stress. Phys. Rev. B 82, 075408 (2010).

    ADS  Google Scholar 

  36. Sneppen, K., Krug, J., Jensen, M. H., Jayaprakash, C. & Bohr, T. Dynamic scaling and crossover analysis for the Kuramoto–Sivashinsky equation. Phys. Rev. A 46, R7351–R7354 (1992).

    ADS  Google Scholar 

  37. Sutton, M. A review of X-ray intensity fluctuation spectroscopy. C.R. Phys. 9, 657–667 (2008).

    ADS  Google Scholar 

  38. Sikharulidze, I. et al. Smectic membranes in motion: approaching the fast limits of X-ray photon correlation spectroscopy. Phys. Rev. Lett. 88, 115503 (2002).

    ADS  Google Scholar 

  39. Fahnline, D., Yang, B., Vedam, K., Messier, R. & Pilione, L. Intrinsic Stress in a-germanium films deposited by rf-magnetron sputtering. MRS Online Proc. Libr. 130, 355–360 (1988).

    Google Scholar 

  40. Moss, S. C. & Graczyk, J. F. Evidence of voids within the As-deposited structure of glassy silicon. Phys. Rev. Lett. 23, 1167–1171 (1969).

    ADS  Google Scholar 

  41. Thornton, J. A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666–670 (1974).

    ADS  Google Scholar 

  42. Marsen, B. & Sattler, K. Fullerene-structured nanowires of silicon. Phys. Rev. B 60, 11593–11600 (1999).

    ADS  Google Scholar 

  43. Messier, R., Giri, A. P. & Roy, R. A. Revised structure zone model for thin-film physical structure. J. Vac. Sci. Technol. A 2, 500–503 (1984).

    ADS  Google Scholar 

  44. Dirks, A. G. & Leamy, H. J. Columnar microstructure in vapor-deposited thin-films. Thin Solid Films 47, 219–233 (1977).

    ADS  Google Scholar 

  45. Henderson, D., Brodsky, M. H. & Chaudhari, P. Simulation of structural anisotropy and void formation in amorphous thin films. Appl. Phys. Lett. 25, 641–643 (1974).

    ADS  Google Scholar 

  46. Thornton, J. A. The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. 4, 3059–3065 (1986).

    ADS  Google Scholar 

  47. Cargill, G. S. Anisotropic microstructure in evaporated amorphous germanium films. Phys. Rev. Lett. 28, 1372–1375 (1972).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Ziegler for beamline support. R.L.H. and J.G.U. were supported by the US Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences (BES) under DE-FG02-07ER46380; C.W., K.F.L. and M.G.R. were supported by DOE BES grant DE-FG02-03ER46037. This research used resources of the Advanced Photon Source (APS), a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the experimental work at the APS. R.L.H., C.W. and M.G.R. were chiefly responsible for the subsequent processing and analysis of the data, with significant contributions from S.N.; R.L.H. and J.G.U. designed and constructed the growth chamber; R.L.H. and K.F.L. devised the new experimental methods and directed the project. All authors participated in preparing the manuscript.

Corresponding author

Correspondence to Randall L. Headrick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulbrandt, J., Rainville, M., Wagenbach, C. et al. Direct measurement of the propagation velocity of defects using coherent X-rays. Nature Phys 12, 794–799 (2016). https://doi.org/10.1038/nphys3708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing