Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast X-ray pulse characterization at free-electron lasers

Abstract

The ability to fully characterize ultrashort, ultra-intense X-ray pulses at free-electron lasers (FELs) will be crucial in experiments ranging from single-molecule imaging to extreme-timescale X-ray science. This issue is especially important at current-generation FELs, which are primarily based on self-amplified spontaneous emission and radiate with parameters that fluctuate strongly from pulse to pulse. Using single-cycle terahertz pulses from an optical laser, we have extended the streaking techniques of attosecond metrology to measure the temporal profile of individual FEL pulses with 5 fs full-width at half-maximum accuracy, as well as their arrival on a time base synchronized to the external laser to within 6 fs r.m.s. Optical laser-driven terahertz streaking can be utilized at any X-ray photon energy and is non-invasive, allowing it to be incorporated into any pump–probe experiment, eventually characterizing pulses before and after interaction with most sample environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of single-shot, single-cycle terahertz streaking measurement.
Figure 2: Terahertz streaking experiment set-up.
Figure 3: Averaged spectrogram.
Figure 4: Single-shot FEL pulse power profile on the pump–probe laser time base.
Figure 5: Measured arrival time jitter.

Similar content being viewed by others

References

  1. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  2. Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  3. Pile, D. X-rays first light from SACLA. Nature Photon. 5, 456–457 (2011).

    Article  ADS  Google Scholar 

  4. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photon. 6, 540–544 (2012).

    Article  ADS  Google Scholar 

  5. Ding, Y. et al. Measurements and simulations of ultralow emittance and ultrashort electron beams in the Linac Coherent Light Source. Phys. Rev. Lett. 102, 254801 (2009).

    Google Scholar 

  6. Emma, P. et al. Femtosecond to subfemtosecond X-ray pulses from a self-amplified spontaneous-emission-based free-electron laser. Phys. Rev. Lett. 92, 074801 (2004).

    Article  ADS  Google Scholar 

  7. Meyer, M. et al. Angle-resolved electron spectroscopy of laser-assisted Auger decay induced by a few-femtosecond X-ray pulse. Phys. Rev. Lett. 108, 063007 (2012).

    Article  ADS  Google Scholar 

  8. Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104 (2011).

    Article  ADS  Google Scholar 

  9. Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    Article  ADS  Google Scholar 

  10. Vinko, S. M. et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–U75 (2012).

    Article  ADS  Google Scholar 

  11. Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–U66 (2010).

    Article  ADS  Google Scholar 

  12. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  ADS  Google Scholar 

  13. Siebert, M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–U86 (2011).

    Article  ADS  Google Scholar 

  14. Barty, A. et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photon. 6, 35–40 (2012).

    Article  ADS  Google Scholar 

  15. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Statistical and coherence properties of radiation from x-ray free-electron laser. New J. Phys. 12, 035010 (2010).

    Article  ADS  Google Scholar 

  16. Cavalieri, A. L. et al. Clocking femtosecond X-rays. Phys. Rev. Lett. 94, 114801 (2005).

    Article  ADS  Google Scholar 

  17. Azima, A. et al. Time resolved pump–probe experiments beyond the jitter limitations at FLASH. Appl. Phys. Lett. 94, 144102 (2009).

    Article  ADS  Google Scholar 

  18. Tavella, F., Stojanovic, N., Geloni, G. & Gensch, M. Few femtosecond timing at fourth-generation X-ray light sources. Nature Photon. 5, 162–165 (2011).

    Article  ADS  Google Scholar 

  19. Radcliffe, P. et al. Single-shot characterization of independent femtosecond extreme ultraviolet free electron and infrared laser pulses. Appl. Phys. Lett. 90, 131108 (2007).

    Article  ADS  Google Scholar 

  20. Gahl, C. et al. A femtosecond X-ray/optical cross-correlator. Nature Photon. 2, 165–169 (2008).

    Article  ADS  Google Scholar 

  21. Maltezopoulos, T. et al. Single-shot timing measurement of extreme-ultraviolet free-electron laser pulses. New J. Phys. 10, 033026 (2008).

    Article  ADS  Google Scholar 

  22. Bionta, M. R. et al. Spectral encoding of X-ray/optical relative delay. Opt. Express 19, 21855–21865 (2011).

    Article  ADS  Google Scholar 

  23. Schorb, S. et al. X-ray-optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser. Appl. Phys. Lett. 100, 121107 (2012).

    Article  ADS  Google Scholar 

  24. Beye, M. et al. X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution. Appl. Phys. Lett. 100, 121108 (2012).

    Article  ADS  Google Scholar 

  25. Amann, J. et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nature Photon. 6, 693–698 (2012).

    Article  ADS  Google Scholar 

  26. Christov, I., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    Article  ADS  Google Scholar 

  27. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  28. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  29. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  30. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  31. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  32. Gagnon, J., Goulielmakis, E. & Yakovlev, V. S. The accurate FROG characterization of attosecond pulses from streaking measurements. Appl. Phys. B 92, 25–32 (2008).

    Article  ADS  Google Scholar 

  33. Frühling, U. et al. Single-shot terahertz-field-driven X-ray streak camera. Nature Photon. 3, 523–528 (2009).

    Article  ADS  Google Scholar 

  34. Eriksson, F. et al. Atomic scale interface engineering by modulated ion-assisted deposition applied to soft X-ray multilayer optics. Appl. Opt. 47, 4197–4204 (2008).

    Article  ADS  Google Scholar 

  35. Planken, P., Nienhuys, H., Bakker, H. & Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B 18, 313–317 (2001).

    Article  ADS  Google Scholar 

  36. Yeh, K. L., Hoffmann, M. C., Hebling, J. & Nelson, K. A. Generation of 10 µJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007).

    Article  ADS  Google Scholar 

  37. Tiedtke, K. et al. Gas-detectors for X-ray lasers. J. Appl. Phys. 103, 094511 (2008).

    Article  ADS  Google Scholar 

  38. Nicolosi, P. et al. Grazing-incidence spectrometer for the monitoring of the VUV FEL beam at DESY. J. Electron Spectrosc. Rel. Phenom. 144, 1055–1058 (2005).

    Article  Google Scholar 

  39. Spence, D. E., Sleat, W. E., Evans, J. M., Sibbett, W. & Kafka J. D. Time synchronization measurements btween 2 self-modelocked Ti:sapphire lasers. Opt. Commun. 101, 286–296 (1993).

    Article  ADS  Google Scholar 

  40. Ma, L-S. et al. Sub-10 femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators. Phys. Rev. A 64, 021802(R) (2001).

    Article  ADS  Google Scholar 

  41. Bonifacio, R., Pellegrini C. & Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

    Article  ADS  Google Scholar 

  42. Kim, K-J. An analysis of self-amplified spontaneous emission. Nucl. Instrum. Methods A 250, 396–403 (1986).

    Article  ADS  Google Scholar 

  43. Hoffmann, M. C. & Fulop, J. A. Intense ultrashort terahertz pulses: generation and applications. J. Phys. D 44, 083001 (2011).

    Article  ADS  Google Scholar 

  44. Duesterer, S. et al. Femtosecond X-ray pulse length characterization at the Linac Coherent Light Source free-electron laser. New J. Phys. 13, 093024 (2011).

    Article  ADS  Google Scholar 

  45. Hauri, C. P., Ruchert, C., Vicario, C. & Ardana, F. Strong-field single-cycle THz pulses generated in an organic crystal. Appl. Phys. Lett. 99, 161116 (2011).

    Article  ADS  Google Scholar 

  46. Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO(3). Appl. Phys. Lett. 99, 091106 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors owe special thanks to the scientific and technical staff at FLASH at the Deutsches Elektronen-Synchrotron (DESY), Hamburg, for operation and delivery of the SASE–FEL beam. Portions of this work were funded by the Max Planck Society through institutional support for the Max Planck Research Department for Structural Dynamics at the University of Hamburg, by the Munich Centre for Advanced Photonics, and by the Science Foundation Ireland PI (grant no. 07/IN.1/I1771), IRCSET and the EXTATIC EMJD. N.M.K. is grateful to European XFEL GmbH and to the Donostia International Physics Center (DIPC) for hospitality and financial support. He also acknowledges financial support from the programme ‘Physics with Accelerators and Reactors in West Europe’ of the Russian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Contributions

A.L.C., M.C.H. and H.S. conceived the project. I.G. and M.C.H. designed and executed the experiments. C.B., A.L.C., J.T.C, S.D., T.J.K., A.R.M., M.M., T.M., P.R., H.S. and Th.T. assisted in experimental realization. C.B., A.L.C., I.G., M.C.H., A.K.K., N.M.K., A.R.M., T.M., M.M., H.S. and Th.T. analysed and/or interpreted the data. A.L.C., S.D. and M.M. contributed materials to the experiments. A.L.C., J.T.C., I.G., M.C.H., M.M., H.S. and Th.T. wrote the paper.

Corresponding author

Correspondence to A. L. Cavalieri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grguraš, I., Maier, A., Behrens, C. et al. Ultrafast X-ray pulse characterization at free-electron lasers. Nature Photon 6, 852–857 (2012). https://doi.org/10.1038/nphoton.2012.276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing