Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions

Abstract

Friction and wear are two main causes of mechanical energy dissipation and component failure, especially in micro/nanomechanical systems with large surface-to-volume ratios. In the past decade there has been an increasing level of research interest regarding superlubricity1,2,3,4,5, a phenomenon, also called structural superlubricity, in which friction almost vanishes between two incommensurate solid surfaces2,3. However, all experimental structural superlubricity has been obtained on the microscale or nanoscale, and predominantly under high vacuum. Here, we show that superlubricity can be realized in centimetres-long double-walled carbon nanotubes (DWCNTs) under ambient conditions. Centimetres-long inner shells can be pulled out continuously from such nanotubes, with an intershell friction lower than 1 nN that is independent of nanotube length. The shear strength of the DWCNTs is only several pascals, four orders of magnitude lower than the lowest reported value in CNTs and graphite. The perfect structure of the ultralong DWCNTs used in our experiments is essential for macroscale superlubricity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of inner-shell sliding in ultralong DWCNTs.
Figure 2: Process of pulling out the inner shell from a DWCNT.
Figure 3: Friction and dissipation energy of three DWCNTs.
Figure 4: Analysis of intershell friction of DWCNTs.

Similar content being viewed by others

References

  1. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  2. Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837 (1990).

    Article  CAS  Google Scholar 

  3. Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991).

    Article  CAS  Google Scholar 

  4. Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 78, 1448–1451 (1997).

    Article  CAS  Google Scholar 

  5. Martin, J., Donnet, C., Le Mogne, T. & Epicier, T. Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583 (1993).

    Article  CAS  Google Scholar 

  6. Szeri, A. Z. Tribology: Friction, Lubrication, and Wear (Hemisphere, 1980).

    Google Scholar 

  7. Amiri, M. & Khonsari, M. M. On the thermodynamics of friction and wear―a review. Entropy 12, 1021–1049 (2010).

    Article  CAS  Google Scholar 

  8. Yunhui, M., Dehua, T., Xicheng, W. & Qinghua, L. Research on friction-coatings with activated ultra-thick tin-base. Adv. Tribol. 915–919 (2010).

  9. Erdemir, A. & Martin, J. M. Superlubricity (Elsevier, 2007).

    Google Scholar 

  10. Andersson, J., Erck, R. & Erdemir, A. Friction of diamond-like carbon films in different atmospheres. Wear 254, 1070–1075 (2003).

    Article  CAS  Google Scholar 

  11. Erdemir, A. & Donnet, C. Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D 39, R311 (2006).

    Article  CAS  Google Scholar 

  12. Sokoloff, J. Theory of the effects of multiscale surface roughness and stiffness on static friction. Phys. Rev. E 73, 016104 (2006).

    Article  CAS  Google Scholar 

  13. Erdemir, A., Eryilmaz, O. & Fenske, G. Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 18, 1987–1992 (2000).

    Article  CAS  Google Scholar 

  14. Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).

    Article  Google Scholar 

  15. Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Molecular mechanics simulation of the sliding behavior between nested walls in a multi-walled carbon nanotube. Carbon 48, 2934–2940 (2010).

    Article  CAS  Google Scholar 

  17. Xia, Z. & Curtin, W. Pullout forces and friction in multiwall carbon nanotubes. Phys. Rev. B 69, 233408 (2004).

    Article  Google Scholar 

  18. Zheng, Q. & Jiang, Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88, 45503 (2002).

    Article  Google Scholar 

  19. Kis, A., Jensen, K., Aloni, S., Mickelson, W. & Zettl, A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. 97, 25501 (2006).

    Article  CAS  Google Scholar 

  20. Fennimore, A. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    Article  CAS  Google Scholar 

  21. Yu, M. F., Yakobson, B. I. & Ruoff, R. S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B 104, 8764–8767 (2000).

    Article  CAS  Google Scholar 

  22. Yu, M. F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  23. Hong, B. H. et al. Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes. Proc. Natl Acad. Sci. USA 102, 14155–14158 (2005).

    Article  CAS  Google Scholar 

  24. Guo, W., Zhong, W., Dai, Y. & Li, S. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes. Phys. Rev. B 72, 075409 (2005).

    Article  Google Scholar 

  25. Huhtala, M. et al. Improved mechanical load transfer between shells of multiwalled carbon nanotubes. Phys. Rev. B 70, 045404 (2004).

    Article  Google Scholar 

  26. Peng, B. et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotech. 3, 626–631 (2008).

    Article  CAS  Google Scholar 

  27. Wen, Q. et al. 100 mm long, semiconducting triple-walled carbon nanotubes. Adv. Mater. 22, 1867–1871 (2010).

    Article  CAS  Google Scholar 

  28. Wen, Q. et al. Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 µm/s. Chem. Mater. 22, 1294–1296 (2010).

    Article  CAS  Google Scholar 

  29. Zhang, R. et al. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 23, 3387–3391 (2011).

    Article  CAS  Google Scholar 

  30. Zhang, R. et al. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nature Commun. 4, 1727 (2013).

    Article  Google Scholar 

  31. Zheng, Q., Liu, J. Z. & Jiang, Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Phys. Rev. B 65, 245409 (2002).

    Article  Google Scholar 

  32. Kis, A. & Zettl, A. Nanomechanics of carbon nanotubes. Phil. Trans. R. Soc. Lond. A 366, 1591–1611 (2008).

    Article  CAS  Google Scholar 

  33. Benedict, L. X. et al. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286, 490–496 (1998).

    Article  CAS  Google Scholar 

  34. Gnecco, E., Bennewitz, R., Gyalog, T. & Meyer, E. Friction experiments on the nanometre scale. J. Phys. 13, R619–R641 (2001).

    CAS  Google Scholar 

  35. Ding, F., Harutyunyan, A. R. & Yakobson, B. I. Dislocation theory of chirality-controlled nanotube growth. Proc. Natl Acad. Sci. USA 106, 2506–2509 (2009).

    Article  CAS  Google Scholar 

  36. Xu, Z., Li, X., Yakobson, B. I. & Ding, F. Interaction between graphene layers and the mechanisms of graphite's superlubricity and self-retraction. Nanoscale 5, 6736–6741 (2013).

    Article  CAS  Google Scholar 

  37. Wei, X. L., Liu, Y., Chen, Q., Wang, M. S. & Peng, L. M. The very-low shear modulus of multi-walled carbon nanotubes determined simultaneously with the axial Young's modulus via in situ experiments. Adv. Funct. Mater. 18, 1555–1562 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation for the National Basic Research Program of China (Program Number 2011CB932602 and 2013CB934200) and the National Natural Science Foundation of China (Grant Number 51372132 and 60925003). The authors thank Dezheng Wang and Wengen Ou-Yang for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.W. proposed and supervised the project. R.F.Z. designed and performed the experiments and wrote the manuscript. Y.Y.Z. co-supervised the project and designed the outline of the manuscript. Z.Y.N. participated in most experiments. Q.S.Z., Q.S., Q.Z. and Q.W.Z. participated in data analysis and manuscript preparation. H.H.X. participated in the synthesis of ultralong CNTs.

Corresponding authors

Correspondence to Yingying Zhang or Fei Wei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Ning, Z., Zhang, Y. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotech 8, 912–916 (2013). https://doi.org/10.1038/nnano.2013.217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing