Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deterministic control of ferroelastic switching in multiferroic materials

Abstract

Multiferroic materials showing coupled electric, magnetic and elastic orderings provide a platform to explore complexity and new paradigms for memory and logic devices. Until now, the deterministic control of non-ferroelectric order parameters in multiferroics has been elusive. Here, we demonstrate deterministic ferroelastic switching in rhombohedral BiFeO3 by domain nucleation with a scanning probe. We are able to select among final states that have the same electrostatic energy, but differ dramatically in elastic or magnetic order, by applying voltage to the probe while it is in lateral motion. We also demonstrate the controlled creation of a ferrotoroidal order parameter. The ability to control local elastic, magnetic and torroidal order parameters with an electric field will make it possible to probe local strain and magnetic ordering, and engineer various magnetoelectric, domain-wall-based and strain-coupled devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferroelectric domains in BFO.
Figure 2: Switching spectroscopy piezoresponse force microscopy.
Figure 3: Phase-field simulations of ferroelectric switching in BFO.
Figure 4: Tip control of polarization switching mechanisms.
Figure 5: Engineering domain patterns.
Figure 6: Creation of closure in-plane domains in BFO.

Similar content being viewed by others

References

  1. Scott, J. Ferroelectric Memories (Springer Verlag, 2000).

    Book  Google Scholar 

  2. Tybell, T., Ahn, C. H. & Triscone, J. M. Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 72, 1454–1456 (1998).

    Article  CAS  Google Scholar 

  3. Tsymbal, E. Y. & Kohlstedt H. Applied physics—tunneling across a ferroelectric. Science 313, 181–183 (2006).

    Article  CAS  Google Scholar 

  4. Miller, S. L. & McWhorter, P. J. Physics of the ferroelectric nonvolatile memory field-effect transistor. J. Appl. Phys. 72, 5999–6010 (1992).

    Article  CAS  Google Scholar 

  5. Mathews, S., Ramesh, R., Venkatesan, T. & Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997).

    Article  CAS  Google Scholar 

  6. Tanaka, K. et al. Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage. Jpn J. Appl. Phys. 47, 3311–3325 (2008).

    Article  CAS  Google Scholar 

  7. Jesse, S. et al. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Mater. 7, 209–215 (2008).

    Article  CAS  Google Scholar 

  8. Paruch, P., Giamarchi, T. & Triscone, J. M. Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005).

    Article  CAS  Google Scholar 

  9. Li, L. J., Li, J. Y., Shu, Y. C. & Yen, J. H. The magnetoelectric domains and cross-field switching in multiferroic BiFeO3 . Appl. Phys. Lett. 93, 192506 (2008).

    Article  Google Scholar 

  10. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  11. Chu, Y. H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  12. Takamura, Y. et al. Tuning magnetic domain structure in nanoscale La0.7Sr0.3MnO3 islands. Nano Lett. 6, 1287–1291 (2006).

    Article  CAS  Google Scholar 

  13. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  14. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  15. Bea, H. et al. Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008).

    Article  CAS  Google Scholar 

  16. Bea, H. et al. Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 89, 242114 (2006).

    Article  Google Scholar 

  17. Dho, J., Qi, X., Kim, H., MacManus-Driscoll, J. L. & Blamire, M. G. Large electric polarization and exchange bias in multiferroic BiFeO3 . Adv. Mater. 18, 1445–1448 (2006).

    Article  CAS  Google Scholar 

  18. Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nature Mater. 6, 296–302 (2007).

    Article  CAS  Google Scholar 

  19. Bea, H. et al. Combining half-metals and multiferroics into epitaxial heterostructures for spintronics. Appl. Phys. Lett. 88, 062502 (2006).

    Article  Google Scholar 

  20. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  21. Cruz, M. P. et al. Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. Phys. Rev. Lett. 99, 217601 (2007).

    Article  CAS  Google Scholar 

  22. Zavaliche, F. et al. Polarization switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 252902 (2005).

    Article  Google Scholar 

  23. Shafer, P. et al. Planar electrode piezoelectric force microscopy to study electric polarization switching in BiFeO3 . Appl. Phys. Lett. 90, 202909 (2007).

    Article  Google Scholar 

  24. Shu, Y. C., Yen, J. H., Chen, H. Z., Li, J. Y. & Li, L. J. Constrained modeling of domain patterns in rhombohedral ferroelectrics. Appl. Phys. Lett. 92, 052909 (2008).

    Article  Google Scholar 

  25. Kubel, F. & Schmid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 . Acta Cryst. B 46, 698–702 (1990).

    Article  Google Scholar 

  26. Zavaliche, F. et al. Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transitions 79, 991–1017 (2006).

    Article  CAS  Google Scholar 

  27. Zavaliche, F. et al. Ferroelectric domain structure in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 182912 (2005).

    Article  Google Scholar 

  28. Jesse, S., Lee, H. N. & Kalinin, S. V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instr. 77, 073702 (2006).

    Article  Google Scholar 

  29. Kalinin, S. V. et al. Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. Proc. Natl Acad. Sci. USA 104, 20204–20209 (2007).

    Article  CAS  Google Scholar 

  30. Molotskii, M. et al. Ferroelectric domain breakdown. Phys. Rev. Lett. 90, 107601 (2003).

    Article  Google Scholar 

  31. Landauer, R. Electrostatic considerations in BaTiO3 domain formation during polarization reversal. J. Appl. Phys. 28, 227–234 (1957).

    Article  CAS  Google Scholar 

  32. Miller, R. & Weinreich, G. Mechanism for the sidewise motion of 180° domain walls in barium titanate. Phys. Rev. 117, 1460–1466 (1960).

    Article  CAS  Google Scholar 

  33. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  34. Huijben, M. et al. Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys. Rev. B 78, 094413 (2008).

    Article  Google Scholar 

  35. Martin, L. W. et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008).

    Article  CAS  Google Scholar 

  36. Chen, L. Q. & Shen, J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998).

    Article  CAS  Google Scholar 

  37. Zhang, J. X. et al. Computer simulation of ferroelectric domain structures in epitaxial BiFeO3 thin films. J. Appl. Phys. 103, 094111 (2008).

    Article  Google Scholar 

  38. Chen, Y. B. et al. Ferroelectric domain structures of epitaxial (001) BiFeO3 thin films. Appl. Phys. Lett. 90, 072907 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Division of Scientific User Facilities, Department of Energy, Basic Energy Sciences (S.J., A.P.B.) and Oak Ridge National Laboratory Laboratory Directed Research and Development program (S.V.K., L.Q.C.). S.C. and L.Q.C. acknowledge the financial support of National Science Foundation under DMR-0213623 and DMR-0507146. The theory work at Pennsylvania State University is also supported by the Department of Energy Basic Sciences under DE-FG02-07ER46417 (L.Q.C.). Y.H.C. would like to acknowledge the support of the National Science Council, Republic of China, under contract No. NSC 98-2119-M-009-019. N.B. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

N.B. conceived, designed and conducted the experiments, and wrote the article. S.C. and L.Q.C. performed modelling. M.H., Y.H.C. and R.R. contributed materials and S.J. developed spectroscopic measurement technique and analysis tools. S.V.K. and A.P.B. co-wrote the article. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to N. Balke.

Supplementary information

Supplementary information

Supplementary information (PDF 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balke, N., Choudhury, S., Jesse, S. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nature Nanotech 4, 868–875 (2009). https://doi.org/10.1038/nnano.2009.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing