Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fatigue resistance of aligned carbon nanotube arrays under cyclic compression

Abstract

Structural components subject to cyclic stress can succumb to fatigue, causing them to fail at stress levels much lower than if they were under static mechanical loading1. However, despite extensive research into the mechanical properties of carbon nanotube structures2,3,4,5,6,7,8,9 for more than a decade, data on the fatigue behaviour of such devices have never been reported. We show that under repeated high compressive strains, long, vertically aligned multiwalled nanotubes exhibit viscoelastic behaviour similar to that observed in soft-tissue membranes10,11. Under compressive cyclic loading, the mechanical response of the nanotube arrays shows preconditioning, characteristic viscoelasticity-induced hysteresis, nonlinear elasticity and stress relaxation, and large deformations. Furthermore, no fatigue failure is observed at high strain amplitudes up to half a million cycles. This combination of soft-tissue-like behaviour and outstanding fatigue resistance suggests that properly engineered nanotube structures could mimic artificial tissues, and that their good electrical conductivity could lead to their use as compliant electrical contacts in a variety of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compressive cyclic stress–strain characterization tests.
Figure 2: Hysteresis and nonlinear elastic behaviour of a multiwalled CNT block.
Figure 3: Strain–fatigue relation in cyclic strain controlled testing.
Figure 4: Electromechanical characterization test.

Similar content being viewed by others

References

  1. Dieter, G. E. Mechanical Metallurgy (McGraw-Hill, New York, 1986).

    Google Scholar 

  2. Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).

    Article  CAS  Google Scholar 

  3. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).

    Google Scholar 

  4. Yu, M. F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  5. Wei, C. Y., Cho, K. J. & Srivastava, D. Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67, 115407 (2003).

    Article  Google Scholar 

  6. Yakobson, B. I., Campbell, M. P., Brabec, C. J. & Bernholc, J. High strain rate fracture, and c-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997).

    Article  CAS  Google Scholar 

  7. Cao, A., Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N. & Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005).

    Article  CAS  Google Scholar 

  8. Falvo, M. R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).

    Article  CAS  Google Scholar 

  9. Yakobson, B. I., Brabec, C. J. & Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996).

    Article  CAS  Google Scholar 

  10. Viidik, A. Functional properties of collagenous tissues. Int. Rev. Connect. Tissue Res. 6, 127–215 (1973).

    Article  CAS  Google Scholar 

  11. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, New York, 1993).

    Book  Google Scholar 

  12. Zhang, X. et al. Rapid growth of well-aligned carbon nanotube arrays. Chem. Phys. Lett. 362, 285–290 (2002).

    Article  CAS  Google Scholar 

  13. Kuzumaki, T. & Mitsuda, Y. Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope. Jpn. J. Appl. Phys. 45, 364–368 (2006).

    Article  CAS  Google Scholar 

  14. Suhr, J., Koratkar, N., Keblinski, P. & Ajayan, P. M. Viscoelasticity in carbon nanotube composites. Nature Mater. 4, 134–137 (2005).

    Article  CAS  Google Scholar 

  15. Nieh, T. G., Higashi, K. & Wadsworth, J. Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater. Sci. Eng. A283, 105–110 (2000).

    Article  CAS  Google Scholar 

  16. Fung, Y. C. Biorheology of soft tissues. Biorheology 10, 139–155 (1973).

    Article  CAS  Google Scholar 

  17. Sanjeevi, R. A viscoelastic model for the mechanical properties of biological materials. J. Biomech. 15, 107–109 (1982).

    Article  CAS  Google Scholar 

  18. Jozsa, L. & Kannus, P. A. Human Tendons—Anatomy, Physiology, and Pathology (Human Kinetics, Champaign, Illinois, 1997).

    Google Scholar 

  19. Hunter, L. W. & Lafontaine, S. in Solid-State Sensor and Actuator Workshop, 5th Technical Digest. 178–185 (IEEE, 1992).

  20. Huxley, A. F. Reflections on Muscle (Princeton Univ. Press, Princeton, New Jersey, 1980).

    Google Scholar 

  21. Lee, J. K. & Marcus, M.A. The deflection–bandwidth product of poly(vinylidene fluoride) benders and related structures. Ferroelectrics 32, 93–101 (1981).

    Article  CAS  Google Scholar 

  22. Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).

    Article  CAS  Google Scholar 

  23. Baughman, R. H., Schacklette, L. W., Elsenbaumer, R. L., Plichta, E. J. & Becht, C. Microelectromechanical Actuators Based on Conducting Polymers (Molecular Electronics, Kluwer, The Netherlands, 1991).

    Google Scholar 

  24. Caldwell, D. G. Pseudomuscular actuator for use in dextrous manipulation. Med. Biol. Eng. Comput. 28, 595–600 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. J. Rock for help with sample preparation. P.M.A. acknowledges funding support from the Focus Center New York for Interconnects.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to J. Suhr or P. M. Ajayan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhr, J., Victor, P., Ci, L. et al. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nature Nanotech 2, 417–421 (2007). https://doi.org/10.1038/nnano.2007.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing