Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Species-specific calls activate homologs of Broca's and Wernicke's areas in the macaque

Abstract

The origin of brain mechanisms that support human language—whether these originated de novo in humans or evolved from a neural substrate that existed in a common ancestor—remains a controversial issue. Although the answer is not provided by the fossil record, it is possible to make inferences by studying living species of nonhuman primates. Here we identified neural systems associated with perceiving species-specific vocalizations in rhesus macaques using H215O positron emission tomography (PET). These vocalizations evoke distinct patterns of brain activity in homologs of the human perisylvian language areas. Rather than resulting from differences in elementary acoustic properties, this activity seems to reflect higher order auditory processing. Although parallel evolution within independent primate species is feasible, this finding suggests the possibility that the last common ancestor of macaques and humans, which lived 25–30 million years ago, possessed key neural mechanisms that were plausible candidates for exaptation during the evolution of language.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRI-based anatomically segmented STG atlas.
Figure 2: Illustration of acoustic analysis.
Figure 3: Selective activation elicited by species-specific vocalizations in the macaque.
Figure 4: Histograms illustrating mean (± s.e.m.) normalized rCBF per monkey, derived from ventral premotor cortex (PMv), Tpt and posterior parietal cortex (PPC).
Figure 5: Histograms illustrating mean (± s.e.m.) normalized rCBF per monkey, derived from areas R and A1.

Similar content being viewed by others

References

  1. Hauser, M.D., Chomsky, N. & Fitch, W.T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    Article  CAS  Google Scholar 

  2. Seyfarth, R.M., Cheney, D.L. & Bergman, T.J. Primate social cognition and the origins of language. Trends Cogn. Sci. 9, 264–266 (2005).

    Article  Google Scholar 

  3. Seyfarth, R.M. & Cheney, D.L. Signalers and receivers in animal communication. Annu. Rev. Psychol. 54, 145–173 (2003).

    Article  Google Scholar 

  4. Ghazanfar, A.A. & Santos, L.R. Primate brains in the wild: the sensory bases for social interactions. Nature Rev. Neurosci. 5, 603–616 (2004).

    Article  CAS  Google Scholar 

  5. Fitch, W.T. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J. Acoust. Soc. Am. 102, 1213–1222 (1997).

    Article  CAS  Google Scholar 

  6. Poremba, A. et al. Species-specific calls evoke asymmetric activity in the monkey's temporal poles. Nature 427, 448–451 (2004).

    Article  CAS  Google Scholar 

  7. Rauschecker, J.P., Tian, B. & Hauser, M.D. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  Google Scholar 

  8. Gil-da-Costa, R. et al. Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque. Proc. Natl. Acad. Sci. USA. 101, 17516–17521 (2004).

    Article  CAS  Google Scholar 

  9. Gifford, G.W., MacLean, K.A., Hauser, M.D. & Cohen, Y.E. The neurophysiology of functionally meaningful categories: macaque ventrolateral prefrontal cortex plays a critical role in spontaneous categorization of species-specific vocalizations. J. Cogn. Neurosci. 17, 1471–1482 (2005).

    Article  Google Scholar 

  10. Romanski, L.M. & Goldman-Rakic, P.S. An auditory domain in primate prefrontal cortex. Nat. Neurosci. 5, 15–16 (2002).

    Article  CAS  Google Scholar 

  11. Caplan, D. Neurolinguistics and Linguistic Aphasiology (Cambridge Univ. Press, Cambridge, UK, 1987).

    Book  Google Scholar 

  12. Galaburda, A.M. & Pandya, D.N. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J. Comp. Neurol. 221, 169–184 (1983).

    Article  CAS  Google Scholar 

  13. Preuss, T.M. & Goldman-Rakic, P.S. Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J. Comp. Neurol. 310, 475–506 (1991).

    Article  CAS  Google Scholar 

  14. Deacon, T.W. The neural circuitry underlying primate calls and human language. Hum. Evol. 4, 367–401 (1989).

    Article  Google Scholar 

  15. Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848 (2002).

    Article  CAS  Google Scholar 

  16. Geyer, S., Matelli, M., Luppino, G. & Zilles, K. Functional neuroanatomy of the primate isocortical motor system. Anat. Embryol. (Berl.) 202, 443–474 (2000).

    Article  CAS  Google Scholar 

  17. Rizzolatti, G. & Arbib, M.A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    Article  CAS  Google Scholar 

  18. Picard, N. & Strick, P.L. Imaging the premotor areas. Curr. Opin. Neurobiol. 11, 663–672 (2001).

    Article  CAS  Google Scholar 

  19. Petrides, M. & Pandya, D.N. Comparative cytoarchitectonic analysis of the human and macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310 (2002).

    Article  CAS  Google Scholar 

  20. Petrides, M., Cadoret, G. & Mackey, S. Orofacial somatomotor responses in the macaque monkey homologue of Broca's area. Nature 435, 1235–1238 (2005).

    Article  CAS  Google Scholar 

  21. Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398 (2003).

    Article  CAS  Google Scholar 

  22. Leinonen, L., Hyvarinen, J. & Sovijarvi, A.R. Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp. Brain Res. 39, 203–215 (1980).

    Article  CAS  Google Scholar 

  23. Binder, J.R. et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 10, 512–528 (2000).

    Article  CAS  Google Scholar 

  24. Warren, J.D. & Griffiths, T.D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J. Neurosci. 23, 5799–5804 (2003).

    Article  CAS  Google Scholar 

  25. Geschwind, N. & Levitsky, W. Human brain: left-right asymmetries in temporal speech regions. Science 161, 186–187 (1968).

    Article  CAS  Google Scholar 

  26. Belin, P., Zatorre, R., Lafaille, P., Ahad, P. & Pike, B. Voice-selective areas in human auditory cortex. Nature 403, 309–312 (2000).

    Article  CAS  Google Scholar 

  27. Papathanassiou, D. et al. A common language network for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage 11, 347–357 (2000).

    Article  CAS  Google Scholar 

  28. Passingham, R.E. The specialization of the human neocortex. in Comparative Neuropsychology (ed. Milner. D.) Ch. 15 271–298 (Oxford Univ. Press, Oxford, 1998).

    Chapter  Google Scholar 

  29. Damasio, A.R. & Geschwind, N. The neural basis of language. Annu. Rev. Neurosci. 7, 127–147 (1984).

    Article  CAS  Google Scholar 

  30. Catani, M., Jones, D.K. & Ffytche, D.H. Perisylvian language networks of the human brain. Ann. Neurol. 57, 8–16 (2005).

    Article  Google Scholar 

  31. Sereno, M.I. Language and the primate brain. in Proceedings Thirteenth Annual Conference of the Cognitive Science Society, 79–84 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1991).

    Google Scholar 

  32. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    Article  CAS  Google Scholar 

  33. Romanski, L.M., Averbeck, B.B. & Diltz, M. Neural representation of vocalizations in the primate ventral prefrontal cortex. J. Neurophysiol. 93, 734–747 (2004).

    Article  Google Scholar 

  34. Price, C.J. et al. Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain 119, 919–931 (1996).

    Article  Google Scholar 

  35. Poeppel, D. et al. Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia 42, 183–200 (2004).

    Article  Google Scholar 

  36. Jurgens, U. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 26, 235–258 (2002).

    Article  Google Scholar 

  37. Wise, S.P. The evolution of ventral premotor cortex and the primate way of reaching. in Evolution of Primate Nervous Systems: A Comprehensive Reference Vol. 4, (ed. Kaas. J.H.) Ch. 11 (in the press).

  38. Gemba, H., Miki, N. & Sasaki, K. Cortical field potentials preceding vocalization and influences of cerebellar hemispherectomy upon them in monkeys. Brain Res. 697, 143–151 (1995).

    Article  CAS  Google Scholar 

  39. Hast, M.H., Fischer, J.M., Wetzel, A.B. & Thompson, V.E. Cortical motor representation of the laryngeal muscles in Macaca mulatta. Brain Res. 73, 229–240 (1974).

    Article  CAS  Google Scholar 

  40. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    Article  Google Scholar 

  41. Thompson-Schill, S.L., Bedny, M. & Goldberg, R.F. The fronal lobes and the regulation of mental activity. Curr. Opin. Neurobiol. 15, 219–224 (2005).

    Article  CAS  Google Scholar 

  42. Fogassi, L. et al. Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005).

    Article  CAS  Google Scholar 

  43. Gannon, P.J., Holloway, R.L., Broadfield, D.C. & Braun, A.R. Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke's brain language area homolog. Science 279, 220–222 (1998).

    Article  CAS  Google Scholar 

  44. Barsalou, L.W. Continuity of the conceptual system across species. Trends Cogn. Sci. 9, 309–311 (2005).

    Article  Google Scholar 

  45. Gouzoules, H. & Gouzoules, S. Agonistic screams differ among four species of macaques: the significance of motivation-structural rules. Anim. Behav. 59, 501–512 (2000).

    Article  CAS  Google Scholar 

  46. Chi, T., Ru, P. & Shamma, S. Multiresolution spectrotemporal analysis of complex sounds. J. Acoust. Soc. Am. 118, 887–906 (2005).

    Article  Google Scholar 

  47. Paxinos, G., Huang, X. & Toga, A.W. The Rhesus Monkey Brain in Stereotaxic Coordinates (Academic Press, San Diego, 2000).

    Google Scholar 

  48. Pandya, D.N. & Sanides, F. Architectonic parcelation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Entwicklungsgesch 139, 127–61 (1973).

    Article  CAS  Google Scholar 

  49. Seltzer, B. & Pandya, D.N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Suomi (US National Institutes of Health, Bethesda, Maryland, USA) for providing the monkeys; S.P. Wise, P. Gannon, T. Hackett, A. Poremba, R. Saunders and L. Ungerleider for help with the neuroanatomy; M.D. Hauser for providing his recordings of rhesus macaque conspecific calls; J. O'Malley, L. Prevost, S. Antonio, B. Forrest and J. Fellows for assistance with animal care and training; D. Robinson for help with preparation of the animal protocol; R. Carson, P. Herscovitch, J. Jacobs, T. Howe, J. Bacon, J. Chincuanco, T. San Juan and S. Conant for help in the design and execution of the PET experiments; and J. Solomon, J. Quinlivan, J. Officewala, N. Mesgarani, B. Swett, N. Jeffries and S. Milleville for assistance with data analysis. We also wish to thank M. Mishkin, S.P. Wise, L. Ungerleider, W.T. Fitch and M.D. Hauser, who reviewed the manuscript and provided valuable comments. This work was supported by the National Institute on Deafness and Other Communication Disorders Division of Intramural Research Programs (DIRP), by the National Institute of Mental Health DIRP and by a grant from Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Contributions

R.G.C. designed the studies, designed the equipment, created the stimuli blocks, trained the animals, ran the experiments, performed the image processing, organized and performed the data analysis, reviewed the results and wrote the paper; A.M. designed the studies, organized the data analysis, reviewed the results and wrote the paper; M.A.L. assisted in study design, designed the equipment, created the stimuli blocks, trained the animals, ran the experiments and performed the image processing and part of the data analysis; M.M. assisted with the neuroanatomy and created the MRI atlas; J.B.F. assisted in study design and performed the acoustic analysis; A.R.B. designed the studies, organized the data analysis, reviewed the results and wrote the paper.

Corresponding author

Correspondence to Allen R Braun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Replication of the Poremba et al. (2004) analysis (ref. 6 in main report). (PDF 90 kb)

Supplementary Table 1

Division of the STG into 9 architectonic areas as represented in the MRI-based anatomically segmented atlas (Fig. 1) and described in the Methods section. (PDF 82 kb)

Supplementary Note (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil-da-Costa, R., Martin, A., Lopes, M. et al. Species-specific calls activate homologs of Broca's and Wernicke's areas in the macaque. Nat Neurosci 9, 1064–1070 (2006). https://doi.org/10.1038/nn1741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing