Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoupling a hole spin qubit from the nuclear spins

Abstract

A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron and hole wavefunctions.
Figure 2: Devices for loading a quantum dot with a single hole.
Figure 3: Coherent population trapping on a single hole spin.
Figure 4: The transverse hyperfine coupling of a single hole spin.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    CAS  Google Scholar 

  2. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  Google Scholar 

  3. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  Google Scholar 

  4. Warburton, R. J. Single spins in self-assembled quantum dots. Nature Mater. 12, 483–493 (2013).

    Article  CAS  Google Scholar 

  5. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon 28. Science 342, 830–833 (2013).

    Article  CAS  Google Scholar 

  6. Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nature Nanotech. 9, 666–670 (2014).

    Article  CAS  Google Scholar 

  7. Grncharova, E. & Perel, V. Relaxation of nuclear spins in interacting with holes in semiconductors. Sov. Phys. Semicond. 11, 977–1000 (1977).

    Google Scholar 

  8. Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Article  Google Scholar 

  9. Eble, B. et al. Hole-nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 146601 (2009).

    Article  CAS  Google Scholar 

  10. Testelin, C., Bernardot, F., Eble, B. & Chamarro, M. Hole-spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B 79, 195440 (2009).

    Article  Google Scholar 

  11. Fischer, J. & Loss, D. Hybridization and spin decoherence in heavy-hole quantum dots. Phys. Rev. Lett. 105, 266603 (2010).

    Article  Google Scholar 

  12. van Kesteren, H. W., Cosman, E. C., van der Poel, W. A. J. A. & Foxon, C. T. Fine structure of excitons in type-II GaAs/AlAs quantum wells. Phys. Rev. B 41, 5283–5292 (1990).

    Article  CAS  Google Scholar 

  13. Martin, R. W. et al. Two-dimensional spin confinement in strained-layer quantum wells. Phys. Rev. B 42, 9237–9240 (1990).

    Article  CAS  Google Scholar 

  14. Bester, G. & Zunger, A. Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005).

    Article  Google Scholar 

  15. Luo, J.-W., Bester, G. & Zunger, A. Supercoupling between heavy-hole and light-hole states in nanostructures. Phys. Rev. B 92, 165301 (2015).

    Article  Google Scholar 

  16. Krizhanovskii, D. N. et al. Individual neutral and charged InxGa1−xAs-GaAs quantum dots with strong in-plane optical anisotropy. Phys. Rev. B 72, 161312 (2005).

    Article  Google Scholar 

  17. Belhadj, T. et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 97, 051111 (2010).

    Article  Google Scholar 

  18. Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

    Article  Google Scholar 

  19. Lu, C.-Y. et al. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence. Phys. Rev. B 81, 035332 (2010).

    Article  Google Scholar 

  20. Maier, F. & Loss, D. Effect of strain on hyperfine-induced hole-spin decoherence in quantum dots. Phys. Rev. B 85, 195323 (2012).

    Article  Google Scholar 

  21. Ribeiro, H., Maier, F. & Loss, D. Inhibition of dynamic nuclear polarization by heavy-hole noncollinear hyperfine interactions. Phys. Rev. B 92, 075421 (2015).

    Article  Google Scholar 

  22. Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Mater. 12, 494–504 (2013).

    Article  CAS  Google Scholar 

  23. Chekhovich, E. A. et al. Element-sensitive measurement of the hole-nuclear spin interaction in quantum dots. Nature Phys. 9, 74–78 (2013).

    Article  CAS  Google Scholar 

  24. Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306 (2007).

    Article  Google Scholar 

  25. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In, Ga)As quantum dots. Phys. Rev. Lett. 108, 186603 (2012).

    Article  Google Scholar 

  27. Dahbashi, R., Hübner, J., Berski, F., Pierz, K. & Oestreich, M. Optical spin noise of a single hole spin localized in an (InGa)As quantum dot. Phys. Rev. Lett. 112, 156601 (2014).

    Article  Google Scholar 

  28. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  CAS  Google Scholar 

  29. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    Article  Google Scholar 

  30. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

    Article  CAS  Google Scholar 

  31. Godden, T. M. et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).

    Article  CAS  Google Scholar 

  32. Varwig, S. et al. Temperature dependence of hole spin coherence in (In, Ga)As quantum dots measured by mode-locking and echo techniques. Phys. Rev. B 87, 115307 (2013).

    Article  Google Scholar 

  33. Fallahi, P., Yilmaz, S. T. & Imamoğlu, A. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

    Article  CAS  Google Scholar 

  34. Chekhovich, E. A., Krysa, A. B., Skolnick, M. S. & Tartakovskii, A. I. Direct measurement of the hole-nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

    Article  CAS  Google Scholar 

  35. Kurtze, H., Yakovlev, D. R., Reuter, D., Wieck, A. D. & Bayer, M. Hyperfine interaction mediated exciton spin relaxation in (In, Ga)As quantum dots. Phys. Rev. B 85, 195303 (2012).

    Article  Google Scholar 

  36. Bennett, A. J. et al. Voltage tunability of single-spin states in a quantum dot. Nature Commun. 4, 1522 (2013).

    Article  Google Scholar 

  37. Houel, J. et al. High resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. Phys. Rev. Lett. 112, 107401 (2014).

    Article  Google Scholar 

  38. Prechtel, J. H. et al. Electrically tunable hole g factor of an optically active quantum dot for fast spin rotations. Phys. Rev. B 91, 165304 (2015).

    Article  Google Scholar 

  39. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  CAS  Google Scholar 

  40. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

    Article  CAS  Google Scholar 

  41. Hansom, J. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Phys. 10, 725–730 (2014).

    Article  CAS  Google Scholar 

  42. Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).

    Article  Google Scholar 

  43. Gerardot, B. D. et al. Laser spectroscopy of individual quantum dots charged with a single hole. Appl. Phys. Lett. 99, 243112 (2011).

    Article  Google Scholar 

  44. Hauck, M. et al. Locating environmental charge impurities with confluent laser spectroscopy of multiple quantum dots. Phys. Rev. B 90, 235306 (2014).

    Article  Google Scholar 

  45. Houel, J. et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).

    Article  CAS  Google Scholar 

  46. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nature Phys. 9, 570–575 (2013).

    Article  CAS  Google Scholar 

  47. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  CAS  Google Scholar 

  48. Högele, A. et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett. 108, 197403 (2012).

    Article  Google Scholar 

  49. Kuhlmann, A. V. et al. Transform-limited single photons from a single quantum dot. Nature Commun. 6, 8204 (2015).

    Article  Google Scholar 

  50. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from NCCR QSIT, SNF project 200020_156637 and EU FP7 ITN S3NANO. We thank F. Maier, H. Ribeiro, P. Szumniak, V. Kornich and D. Loss for fruitful discussions; J.-M. Chauveau for helping to perform the TEM shown in Fig. 1a; and S. Martin and M. Steinacher for technical support. A.L. and A.D.W. acknowledge gratefully support from DFH/UFA CDFA05-06, DFG TRR160 and BMBF Q.com-H 16KIS0109.

Author information

Authors and Affiliations

Authors

Contributions

J.H.P., A.V.K. and J.H. performed the experiments and data analysis. A.L. and A.D.W. carried out the molecular beam epitaxy and sample fabrication. A.L. performed the TEM shown in Fig. 1a. J.H.P., A.V.K. and R.J.W. took the lead in writing the paper. R.J.W. conceived and managed the project.

Corresponding author

Correspondence to Richard J. Warburton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prechtel, J., Kuhlmann, A., Houel, J. et al. Decoupling a hole spin qubit from the nuclear spins. Nature Mater 15, 981–986 (2016). https://doi.org/10.1038/nmat4704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing