Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defined three-dimensional microenvironments boost induction of pluripotency

Abstract

Since the discovery of induced pluripotent stem cells (iPSCs), numerous approaches have been explored to improve the original protocol, which is based on a two-dimensional (2D) cell-culture system. Surprisingly, nothing is known about the effect of a more biologically faithful 3D environment on somatic-cell reprogramming. Here, we report a systematic analysis of how reprogramming of somatic cells occurs within engineered 3D extracellular matrices. By modulating microenvironmental stiffness, degradability and biochemical composition, we have identified a previously unknown role for biophysical effectors in the promotion of iPSC generation. We find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodelling. We conclude that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D PEG hydrogel cultures maintain ESC pluripotency.
Figure 2: Generation of 3DiPSCs.
Figure 3: 3D culture accelerates reprogramming and increases iPSC generation efficiency.
Figure 4: Optimization of iPSC reprogramming efficiency by modulation of 3D microenvironment.
Figure 5: 3D reprogramming accelerates MET and enhances epigenetic plasticity.
Figure 6: 3D generation of human iPSCs.

Similar content being viewed by others

References

  1. Ben-Ze’ev, A., Farmer, S. R. & Penman, S. Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell 21, 365–372 (1980).

    Article  Google Scholar 

  2. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  3. Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Mater. 9, 82–88 (2010).

    Article  CAS  Google Scholar 

  4. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  5. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).

    Article  CAS  Google Scholar 

  6. Singhvi, R. et al. Engineering cell shape and function. Science 264, 696–698 (1994).

    Article  CAS  Google Scholar 

  7. Thomas, C. H., Collier, J. H., Sfeir, C. S. & Healy, K. E. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl Acad. Sci. USA 99, 1972–1977 (2002).

    Article  CAS  Google Scholar 

  8. Bissell, M. J., Rizki, A. & Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Curr. Opin. Cell Biol. 15, 753–762 (2003).

    Article  CAS  Google Scholar 

  9. Roskelley, C. D., Desprez, P. Y. & Bissell, M. J. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl Acad. Sci. USA 91, 12378–12382 (1994).

    Article  CAS  Google Scholar 

  10. Streuli, C. H. et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell. Biol. 129, 591–603 (1995).

    Article  CAS  Google Scholar 

  11. Grant, P. A. A tale of histone modifications. Genome Biol. 2 http://dx.doi.org/10.1186/gb-2001-2-4-reviews0003 (2001).

  12. Sancho-Martinez, I. & Izpisua Belmonte, J. C. Stem cells: surf the waves of reprogramming. Nature 493, 310–311 (2013).

    Article  CAS  Google Scholar 

  13. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  Google Scholar 

  14. Hansson, J. et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell. Rep. 2, 1579–1592 (2012).

    Article  CAS  Google Scholar 

  15. Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nature Mater. 12, 1154–1162 (2013).

    Article  CAS  Google Scholar 

  16. Ehrbar, M. et al. Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials 28, 3856–3866 (2007).

    Article  CAS  Google Scholar 

  17. Ehrbar, M. et al. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8, 3000–3007 (2007).

    Article  CAS  Google Scholar 

  18. Ehrbar, M. et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100, 284–293 (2011).

    Article  CAS  Google Scholar 

  19. Ranga, A. et al. 3D niche microarrays for systems-level analyses of cell fate. Nature Commun. 5, 4324 (2014).

    Article  CAS  Google Scholar 

  20. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  21. Lengner, C. J. et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1, 403–415 (2007).

    Article  CAS  Google Scholar 

  22. Markoulaki, S. et al. Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nature Biotechnol. 27, 169–171 (2009).

    Article  CAS  Google Scholar 

  23. Hawkins, K., Mohamet, L., Ritson, S., Merry, C. L. & Ward, C. M. E-cadherin and, in its absence, N-cadherin promotes Nanog expression in mouse embryonic stem cells via STAT3 phosphorylation. Stem Cells 30, 1842–1851 (2012).

    Article  CAS  Google Scholar 

  24. Gonzalez, B., Denzel, S., Mack, B., Conrad, M. & Gires, O. EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells 27, 1782–1791 (2009).

    Article  CAS  Google Scholar 

  25. Domogatskaya, A., Rodin, S., Boutaud, A. & Tryggvason, K. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 26, 2800–2809 (2008).

    Article  CAS  Google Scholar 

  26. Soteriou, D. et al. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J. Biol. Chem. 288, 18716–18731 (2013).

    Article  CAS  Google Scholar 

  27. Braam, S. R. et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257–2265 (2008).

    Article  CAS  Google Scholar 

  28. Hayashi, Y. et al. Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells 25, 3005–3015 (2007).

    Article  CAS  Google Scholar 

  29. Marson, A. et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3, 132–135 (2008).

    Article  CAS  Google Scholar 

  30. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  31. Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010).

    Article  CAS  Google Scholar 

  32. Aulicino, F., Theka, I., Ombrato, L., Lluis, F. & Cosma, M. P. Temporal perturbation of the Wnt signaling pathway in the control of cell reprogramming is modulated by TCF1. Stem Cell Rep. 2, 707–720 (2014).

    Article  CAS  Google Scholar 

  33. Azzolin, L. et al. Role of TAZ as mediator of Wnt signaling. Cell 151, 1443–1456 (2012).

    Article  CAS  Google Scholar 

  34. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  Google Scholar 

  35. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  Google Scholar 

  36. Schmidt, R. & Plath, K. The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol. 13, 251 (2012).

    Article  CAS  Google Scholar 

  37. Koche, R. P. et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8, 96–105 (2011).

    Article  CAS  Google Scholar 

  38. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  Google Scholar 

  39. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  40. Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 11298–11303 (2007).

    Article  CAS  Google Scholar 

  41. Lee, S. T. et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31, 1219–1226 (2010).

    Article  CAS  Google Scholar 

  42. Lee, S. T. et al. Long-term maintenance of mouse embryonic stem cell pluripotency by manipulating integrin signaling within 3D scaffolds without active Stat3. Biomaterials 33, 8934–8942 (2012).

    Article  CAS  Google Scholar 

  43. Siti-Ismail, N., Bishop, A. E., Polak, J. M. & Mantalaris, A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 29, 3946–3952 (2008).

    Article  CAS  Google Scholar 

  44. Lei, Y. & Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl Acad. Sci. USA 110, E5039–5048 (2013).

    Article  CAS  Google Scholar 

  45. Volpicelli, F. et al. Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro. J. Neurochem. 102, 441–453 (2007).

    Article  CAS  Google Scholar 

  46. Di Stefano, B. et al. An ES-like pluripotent state in FGF-dependent murine iPS cells. PLoS ONE 5, e16092 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Snyder and M. Knobloch for critical reading of the manuscript, A. Negro for polymer batch testing, D. Trono for providing Oct4–GFP and OKSM-doxy-inducible mice, M. Friedli for providing SFFV-OKSM lentiviral vector and for helpful discussion, M. Pluchinotta and P. Manti for the anti-E-Cad and anti-SMA antibodies, the EPFL Transgenic Core Facilities for generating chimaeric mice, and the EPFL Histology Core Facility for performing teratoma histology. This work was financially supported by the EU framework 7 HEALTH research programme PluriMes (http://www.plurimes.eu), the SystemsX.ch RTD project StoNets, an ERC grant (StG_311422) and a Swiss National Science Foundation Singergia grant (CRSII3_147684).

Author information

Authors and Affiliations

Authors

Contributions

M.P.L., Y.O. and M.C. designed the experiments and analysed the data. Y.O. and M.C. performed most of the experiments and statistical analyses. M.P.L. and M.C. wrote the manuscript. A.R. performed and analysed the HTS experiment and contributed to manuscript writing. Y.T. fabricated the microgroove platform. A.P. analysed teratoma assays.

Corresponding author

Correspondence to Matthias P. Lutolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5815 kb)

Supplementary Information

Supplementary Information (XLSX 50 kb)

Supplementary Movie

Supplementary Movie (MP4 1357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caiazzo, M., Okawa, Y., Ranga, A. et al. Defined three-dimensional microenvironments boost induction of pluripotency. Nature Mater 15, 344–352 (2016). https://doi.org/10.1038/nmat4536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4536

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research