Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy

Abstract

The electronic charge density distribution or the electrostatic atomic potential of a solid or molecule contains information not only on the atomic structure, but also on the electronic properties, such as the nature of the chemical bonds or the degree of ionization of atoms. However, the redistribution of charge due to chemical bonding is small compared with the total charge density, and therefore difficult to measure. Here, we demonstrate an experimental analysis of charge redistribution due to chemical bonding by means of high-resolution transmission electron microscopy (HRTEM). We analyse charge transfer on the single-atom level for nitrogen-substitution point defects in graphene, and confirm the ionicity of single-layer hexagonal boron nitride. Our combination of HRTEM experiments and first-principles electronic structure calculations opens a new way to investigate electronic configurations of point defects, other non-periodic arrangements or nanoscale objects that cannot be studied by an electron or X-ray diffraction analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Charge distribution, projected potentials and TEM simulations for nitrogen-doped graphene.
Figure 3: Analysis of the nitrogen substitution defect.
Figure 2: Nitrogen dopants in graphene.
Figure 4: Simulated TEM images for hBN.
Figure 5: Experimental data for hBN.

Similar content being viewed by others

References

  1. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  2. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  3. Coppens, P. & Stevens, E. D. Accurate X-ray diffraction and quantum chemistry: The study of charge density distributions. Adv. Quant. Chem. 10, 1–35 (1977).

    Article  CAS  Google Scholar 

  4. Koritsanszky, T. S. & Coppens, P. Chemical applications of X-ray charge-density analysis. Chem. Rev. 101, 1583–1627 (2001).

    Article  CAS  Google Scholar 

  5. Vainshtein, B. K. Modern Crystallography (Springer, 1964).

    Google Scholar 

  6. Zuo, J. M. Measurements of electron densities in solids: A real-space view of electronic structure and bonding in inorganic crystals. Rep. Prog. Phys. 67, 2053–2103 (2004).

    Article  CAS  Google Scholar 

  7. Wu, L., Zhu, Y. & Tafto, J. Test of first-principle calculations of charge transfer and electron–hole distribution in oxide superconductors by precise measurements of structure factors. Phys. Rev. B 59, 6035–6038 (1999).

    Article  CAS  Google Scholar 

  8. Shibata, S., Hirota, F. & Shioda, T. Molecular electron density from electron scattering. J. Mol. Struct. 485, 1–11 (1999).

    Article  Google Scholar 

  9. Zuo, J. M., Kim, M., O’Keefe, M. & Spence, J. C. H. Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O. Nature 401, 49–52 (1999).

    Article  CAS  Google Scholar 

  10. Wu, L. et al. Valence-electron distribution in MgB2 by accurate diffraction measurements and first-principles calculations. Phys. Rev. B 69, 064501 (2004).

    Article  Google Scholar 

  11. Hamers, R. J., Tromp, R. M. & Demuth, J. E. Surface electronic structure of Si-111 7×7 resolved in real space. Phys. Rev. Lett. 56, 1972–1975 (1986).

    Article  CAS  Google Scholar 

  12. Browning, N. D., Chisholm, M. F. & Pennycook, S. J. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993).

    Article  CAS  Google Scholar 

  13. Muller, D. A., Tzou, Y., Raj, R. & Silcox, J. Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. Nature 366, 725–727 (1993).

    Article  CAS  Google Scholar 

  14. Batson, P. E. Simultaneous stem imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993.).

    Article  CAS  Google Scholar 

  15. Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).

    Article  CAS  Google Scholar 

  16. Gross, L., Mohn, F., Moll, M., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  17. Weiss, C., Wagner, C., Temirov, R. & Tautz, F. S. Direct imaging of intermolecular bonds in scanning tunneling microscopy. J. Am. Chem. Soc. 132, 11864–11865 (2010).

    Article  CAS  Google Scholar 

  18. Wolf, E. L. Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, 1989).

    Google Scholar 

  19. Cox, G. et al. Scanning tunneling microscopy of crystal dislocations in gallium arsenide. Phys. Rev. Lett. 64, 2402–2405 (1990).

    Article  CAS  Google Scholar 

  20. Atamny, F., Spillecke, O. & Schlögl, R. On the STM imaging contrast of graphite: Towards a true atomic resolution. Phys. Chem. Chem. Phys. 1, 4113–4118 (1999).

    Article  CAS  Google Scholar 

  21. Gemming, T., Mobius, G., Exner, M., Ernst, F. & Ruehle, M. Ab initio HRTEM simulations of ionic crystals: A case study of sapphire. J. Microsc. 190, 89–98 (1998).

    Article  CAS  Google Scholar 

  22. Mogck, S., Kooi, B. J., De Hosson, J. Th. M. & Finnis, M. W. Ab initio transmission electron microscopy image simulations of coherent Ag–MgO interfaces. Phys. Rev. B 70, 245427 (2004).

    Article  Google Scholar 

  23. Deng, B. & Marks, L. D. Theoretical structure factors for selected oxides and their effects in high-resolution electron-microscope (HREM) images. Acta Crystallogr. A 62, 208–216 (2006).

    Article  CAS  Google Scholar 

  24. Deng, B., Marks, L. D. & Rondinelli, J. M. Charge defects glowing in the dark. Ultramicroscopy 107, 374–381 (2007).

    Article  CAS  Google Scholar 

  25. Wei, D. et al. Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    Article  CAS  Google Scholar 

  26. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  27. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  28. Pauling, L. The structure and properties of graphite and boron nitride. Proc. Natl Acad. Sci. USA 56, 1646–1652 (1966).

    Article  CAS  Google Scholar 

  29. Meyer, J. C., Chuvilin, A., Algara-Siller, G., Biskupek, J. & Kaiser, U. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683–2689 (2009).

    Article  CAS  Google Scholar 

  30. Jin, C., Lin, F., Suenaga, K. & Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).

    Article  Google Scholar 

  31. Alem, N. et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009).

    Article  Google Scholar 

  32. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  Google Scholar 

  33. Kirkland, E. J. Advanced Computing in Electron Microscopy (Plenum, 1998).

    Book  Google Scholar 

  34. Doyle, P. A. & Turner, P. S. Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Crystallogr. A 24, 390–397 (1968).

    Article  CAS  Google Scholar 

  35. Zhu, Z. H., Hatori, H., Wang, S. B. & Lu, G. Q. Insights into hydrogen atom adsorption on and the electrochemical properties of nitrogen-substituted carbon materials. J. Phys. Chem. B 109, 16744–16749 (2005).

    Article  CAS  Google Scholar 

  36. Lim, S. H., Li, R., Ji, W. & Lin, J. Effects of nitrogenation on single-walled carbon nanotubes within density functional theory. Phys. Rev. B 76, 195406 (2007).

    Article  Google Scholar 

  37. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  CAS  Google Scholar 

  38. Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).

    Article  CAS  Google Scholar 

  39. Thust, A. High-resolution transmission electron microscopy on an absolute contrast scale. Phys. Rev. Lett. 102, 220810 (2009).

    Article  Google Scholar 

  40. Meyer, J. C., Girit, C. O., Crommie, M. & Zettl, A. Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319–322 (2008).

    Article  CAS  Google Scholar 

  41. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  43. Park, H. J., Meyer, J. C., Roth, S. & Skakalova, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  45. Künzel, D., Markert, T., Groß, A. & Benoit, D. M. Bis(terpyridine)-based surface template structures on graphite: A force field and DFT study. Phys. Chem. Chem. Phys. 11, 8867–8878 (2009).

    Google Scholar 

  46. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties. (Vienna Univ. Technology, 2001).

Download references

Acknowledgements

We gratefully acknowledge financial support by the German Research Foundation (DFG) and the Ministry of Science, Research and the Arts (MWK) of the state Baden-Württemberg within the Sub-Angstrom Low-Voltage Electron Microscopy project (SALVE) and by the DFG within research project SFB 569. T.I. acknowledges the JSPS Postdoctoral Fellowship for Research Abroad. G.A-S. acknowledges the support of CONACyT-DAAD scholarship.

Author information

Authors and Affiliations

Authors

Contributions

J.C.M., A.C. and S.K. carried out TEM experiments. J.C.M., S.K. and A.C. analysed the data. S.K. carried out DFT calculations and TEM simulations based on WIEN2k. A.C. contributed to TEM simulations, discussions and analysis. H.J.P., V.S., S.R. and J.H.S. developed the synthesis of nitrogen-doped graphene. D.K. and A.G. carried out DFT calculations using the Vienna Ab initio Simulation Package. G.A-S. contributed to TEM simulations. T.I. and U.S. made Auger spectroscopy measurements. U.K. supervised part of the work. J.C.M. conceived and designed the study and wrote the paper. S.K. and U.K. co-wrote the paper.

Corresponding authors

Correspondence to Jannik C. Meyer or Ute Kaiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, J., Kurasch, S., Park, H. et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nature Mater 10, 209–215 (2011). https://doi.org/10.1038/nmat2941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing