Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy

Abstract

Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy (XPS) analysis of electrochemical cells to ex situ investigations. Using a combination of ambient-pressure XPS and CeO2−x/YSZ/Pt single-chamber cells, we carry out in situ spectroscopy to probe oxidation states of all exposed surfaces in operational SOCs at 750 °C in 1 mbar reactant gases H2 and H2O. Kinetic energy shifts of core-level photoelectron spectra provide a direct measure of the local surface potentials and a basis for calculating local overpotentials across exposed interfaces. The mixed ionic/electronic conducting CeO2−x electrodes undergo Ce3+/Ce4+ oxidation–reduction changes with applied bias. The simultaneous measurements of local surface Ce oxidation states and electric potentials reveal the active ceria regions during H2 electro-oxidation and H2O electrolysis. The active regions extend 150 μm from the current collectors and are not limited by the three-phase-boundary interfaces associated with other SOC materials. The persistence of the Ce3+/Ce4+ shifts in the 150 μm active region suggests that the surface reaction kinetics and lateral electron transport on the thin ceria electrodes are co-limiting processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical activity spreads over 150 μm of the ceria anode.
Figure 2: In situ XPS directly measures local potentials on the surface of the 50-nm-thick ceria cell.
Figure 3: The cerium oxidation state changes in a 100–150 μm region near the Au current collector.
Figure 4: Ce 4d spectra obtained with a two-dimensional area detector (ALS beamline 9.3.2) reveal the 150 μm active region of the ceria electrode near the edge of the Au current collector.

Similar content being viewed by others

References

  1. Atkinson, A. et al. Advanced anodes for high-temperature fuel cells. Nature Mater. 3, 17–27 (2004).

    Article  CAS  Google Scholar 

  2. Minh, N. Q. Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563–588 (1993).

    Article  CAS  Google Scholar 

  3. Huang, Y. H., Dass, R. I., Xing, Z. L. & Goodenough, J. B. Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006).

    Article  CAS  Google Scholar 

  4. Zhan, Z. L. & Barnett, S. A. An octane-fueled solid oxide fuel cell. Science 308, 844–847 (2005).

    Article  CAS  Google Scholar 

  5. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).

    Article  CAS  Google Scholar 

  6. Haile, S. M. Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003).

    Article  CAS  Google Scholar 

  7. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  8. Brandon, N. P., Skinner, S. & Steele, B. C. H. Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003).

    Article  CAS  Google Scholar 

  9. Shao, Z. P. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Article  CAS  Google Scholar 

  10. Esch, F. et al. Electron localization determines defect formation on ceria substrates. Science 309, 752–755 (2005).

    Article  CAS  Google Scholar 

  11. Fleig, J. On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes. J. Power Sources 105, 228–238 (2002).

    Article  CAS  Google Scholar 

  12. Mogensen, M., Sammes, N. M. & Tompsett, G. A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 129, 63–94 (2000).

    Article  CAS  Google Scholar 

  13. Yang, L. et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3−δ . Science 326, 126–129 (2009).

    Article  CAS  Google Scholar 

  14. Campbell, C. T. & Peden, C. H. F. Chemistry—oxygen vacancies and catalysis on ceria surfaces. Science 309, 713–714 (2005).

    Article  CAS  Google Scholar 

  15. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  Google Scholar 

  16. Murray, E. P., Tsai, T. & Barnett, S. A. A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999).

    Article  CAS  Google Scholar 

  17. Ganduglia-Pirovano, M. V., Hofmann, A. & Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007).

    Article  CAS  Google Scholar 

  18. Trovarelli, A. in Catalysis by Ceria and Related Materials (ed. Trovarelli, A.) Ch. 2 (Imperial College Press, 2002).

    Book  Google Scholar 

  19. Hsieh, G., Mason, T. O., Garboczi, E. J. & Pederson, L. R. Experimental limitations in impedance spectroscopy. 3. Effect of reference electrode geometry/position. Solid State Ion. 96, 153–172 (1997).

    Article  CAS  Google Scholar 

  20. Krishnan, V. V., McIntosh, S., Gorte, R. J. & Vohs, J. M. Measurement of electrode overpotentials for direct hydrocarbon conversion fuel cells. Solid State Ion. 166, 191–197 (2004).

    Article  CAS  Google Scholar 

  21. Schichlein, H., Muller, A. C., Voigts, M., Krugel, A. & Ivers-Tiffee, E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 32, 875–882 (2002).

    Article  CAS  Google Scholar 

  22. Metzger, P., Friedrich, K. A., Muller-Steinhagen, H. & Schiller, G. SOFC characteristics along the flow path. Solid State Ion. 177, 2045–2051 (2006).

    Article  CAS  Google Scholar 

  23. Chan, S. H., Chen, X. J. & Khor, K. A. Reliability and accuracy of measured overpotential in a three-electrode fuel cell system. J. Appl. Electrochem. 31, 1163–1170 (2001).

    Article  CAS  Google Scholar 

  24. Winkler, J., Hendriksen, P. V., Bonanos, N. & Mogensen, M. Geometric requirements of solid electrolyte cells with a reference electrode. J. Electrochem. Soc. 145, 1184–1192 (1998).

    Article  CAS  Google Scholar 

  25. Pomfret, M. B. et al. Hydrocarbon fuels in solid oxide fuel cells: In situ Raman studies of graphite formation and oxidation. J. Phys. Chem. C 112, 5232–5240 (2008).

    Article  CAS  Google Scholar 

  26. Pomfret, M. B., Owrutsky, J. C. & Walker, R. A. In situ studies of fuel oxidation in solid oxide fuel cells. Anal. Chem. 79, 2367–2372 (2007).

    Article  CAS  Google Scholar 

  27. Cheng, Z. & Liu, M. L. Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman micro spectroscopy. Solid State Ion. 178, 925–935 (2007).

    Article  CAS  Google Scholar 

  28. Sumi, H. et al. Changes of internal stress in solid-oxide fuel cell during red-ox cycle evaluated by in situ measurement with synchrotron radiation. J. Fuel Cell Sci. Technol. 3, 68–74 (2006).

    Article  CAS  Google Scholar 

  29. Liu, D. J. & Almer, J. Phase and strain distributions associated with reactive contaminants inside of a solid oxide fuel cell. Appl. Phys. Lett. 94, 224106 (2009).

    Article  Google Scholar 

  30. Wilson, J. R. et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nature Mater. 5, 541–544 (2006).

    Article  CAS  Google Scholar 

  31. Fister, T. T. et al. In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure. Appl. Phys. Lett. 93, 151904 (2008).

    Article  Google Scholar 

  32. Ogletree, D. F., Bluhm, H., Hebenstreit, E.D. & Salmeron, M. Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl. Instrum. Methods Phys. Res. 601, 151–160 (2009).

    Article  Google Scholar 

  33. Salmeron, M. & Schlogl, R. Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008).

    Article  CAS  Google Scholar 

  34. Siegbahn, H. & Lundholm, M. A method of depressing gaseous-phase electron lines in liquid-phase ESCA spectra. J. Electron Spectrosc. Relat. Phenom. 28, 135–138 (1982).

    Article  CAS  Google Scholar 

  35. Doron-Mor, H. et al. Controlled surface charging as a depth-profiling probe for mesoscopic layers. Nature 406, 382–385 (2000).

    Article  CAS  Google Scholar 

  36. Ertas, G. & Suzer, S. in Surface Chemistry in Biomedical and Environmental Science (eds Blitz, J. P. & Gun’ko, V. M.) Ch. 5 (Springer, 2006).

    Google Scholar 

  37. Ladas, S., Kennou, S., Bebelis, S. & Vayenas, C. G. Origin of non-Faradaic electrochemical modification of catalytic activity. J. Phys. Chem. 97, 8845–8848 (1993).

    Article  CAS  Google Scholar 

  38. Bard, A. J. & Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications (John Wiley, 2001).

    Google Scholar 

  39. Vetter, K. J. Electrochemical Kinetics: Theoretical and Experimental Aspects (Academic, 1967).

    Google Scholar 

  40. Mogensen, M. in The CRC Handbook of Solid State Electrochemistry (ed. Trovarelli, A.) Ch. 15 (CRC Press, 1997).

    Google Scholar 

  41. Kwon, O. H. & Choi, G. M. Electrical conductivity of thick film YSZ. Solid State Ion. 177, 3057–3062 (2006).

    CAS  Google Scholar 

  42. Grass, M. E. et al. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev. Sci. Instrum. 81, 053106 (2010).

    Article  Google Scholar 

  43. Mullins, D. R., Overbury, S. H. & Huntley, D. R. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf. Sci. 409, 307–319 (1998).

    Article  CAS  Google Scholar 

  44. Fleig, J. On the current–voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. Phys. Chem. Chem. Phys. 7, 2027–2037 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the ONR through Contract number N000140510711. We thank the University of Maryland Nanocenter and the University of Maryland Energy Research Center (UMERC) for support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work at Sandia National Laboratories is supported by the Laboratory Directed Research and Development programme under contract DE-AC04-94AL85000 of the United States Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

All co-authors contributed to the conception and design of experiments. The ALS team collected and analysed the XPS data. The Sandia team collected the electrochemical data. The Maryland team fabricated and characterized cells and collated data analysis. Z.H. and M.A.L. initiated and partially financially supported the collaboration.

Corresponding authors

Correspondence to Gregory S. Jackson, Hendrik Bluhm or Bryan W. Eichhorn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 440 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Grass, M., McDaniel, A. et al. Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nature Mater 9, 944–949 (2010). https://doi.org/10.1038/nmat2851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing