Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conduction at domain walls in oxide multiferroics

Abstract

Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductivity at different wall types.
Figure 2: Conduction at domain walls.
Figure 3: Structural analysis of domain walls.
Figure 4: Proof of concept for device application.

References

  1. Tsuda, N., Nasu, K., Yanase, A. & Siratori, K. Electronic Conduction in Oxides (Springer, 2000).

    Book  Google Scholar 

  2. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Google Scholar 

  3. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    CAS  Google Scholar 

  4. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    CAS  Google Scholar 

  5. Cheong, S.-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  6. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  7. Roytburd, A. Elastic domains and polydomain phases in solids. Phase Transit. 45, 1–34 (1993).

    Article  CAS  Google Scholar 

  8. Thomas, L. et al. Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315, 1553–1556 (2007).

    Article  CAS  Google Scholar 

  9. Přívratská, J. & Janovec, V. Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains. Ferroelectrics 204, 321–331 (1997).

    Article  Google Scholar 

  10. Přívratská, J. & Janovec, V. Spontaneous polarization and/or magnetization in non-ferroelastic domain walls: Symmetry predictions. Ferroelectrics 222, 23–32 (1999).

    Article  Google Scholar 

  11. Goltsev, V. et al. Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3 . Phys. Rev. Lett. 90, 177204 (2003).

    Article  CAS  Google Scholar 

  12. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Article  Google Scholar 

  13. Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: Experimental evidence of WO3−x . J. Phys. Condens. Matter 10, L377–L380 (1998).

    Article  CAS  Google Scholar 

  14. Bartels, M. et al. Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. J. Phys. Condens. Matter 15, 957–962 (2003).

    Article  CAS  Google Scholar 

  15. Zubko, P. et al. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    Article  CAS  Google Scholar 

  16. Kubel, F. & Schmid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 . Acta Crystallogr. B 46, 698–702 (1990).

    Article  Google Scholar 

  17. Lebeugle, D. et al. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91, 022907 (2007).

    Article  Google Scholar 

  18. Streiffer, S. K. et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742–2753 (1998).

    Article  CAS  Google Scholar 

  19. Zavaliche, F. et al. Multiferroic BiFeO3 films: Domain structure and polarization dynamics. Phase Transit. 79, 991–1017 (2006).

    Article  CAS  Google Scholar 

  20. Béa, H. et al. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005).

    Article  Google Scholar 

  21. Cruz, M. P. et al. Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. Phys. Rev. Lett. 99, 217601 (2007).

    Article  CAS  Google Scholar 

  22. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  23. Stemmer, S., Streiffer, S. K., Ernst, F. & Rühle, M. Atomistic structure of 90 domain walls in ferroelectric PbTiO3 thin-films. Phil. Mag. A 71, 713–724 (1995).

    Article  CAS  Google Scholar 

  24. Floquet, N. & Valot, C. Ferroelectric domain walls in BaTiO3: Structural walls model interpreting fingerprints in XRPD diagrams. Ferroelectrics 234, 107–122 (1999).

    Article  CAS  Google Scholar 

  25. Jia, C.-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater. 7, 57–61 (2008).

    Article  CAS  Google Scholar 

  26. Wu, X. & Vanderbilt, D. Theory of hypothetical ferroelectric superlattices incorporating head-to-head and tail-to-tail 180 degree domain walls. Phys. Rev. B 73, 020103(R) (2006).

    Article  Google Scholar 

  27. Allen, L. J., McBride, W., O’Leary, N. L. & Oxley, M. P. Exit wave reconstruction at atomic resolution. Ultramicroscopy 100, 91–104 (2004).

    Article  CAS  Google Scholar 

  28. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

    Article  Google Scholar 

  29. Neaton, J. B. et al. First-principles study of spontaneous polarization in multiferroic BiFeO3 . Phys. Rev. B 71, 014113 (2005).

    Article  Google Scholar 

  30. Li, J. F. et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 84, 5261 (2004).

    Article  CAS  Google Scholar 

  31. Ravindran, P. et al. Theoretical investigation of magnetoelectric behavior in BiFeO3 . Phys. Rev. B 74, 224412 (2006).

    Article  Google Scholar 

  32. Lebeugle, D. et al. Electric-field induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

    Article  CAS  Google Scholar 

  33. Coene, W. M. J., Thust, A., Op de Beeck, M. & Van Dyck, D. Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109–135 (1996).

    Article  CAS  Google Scholar 

  34. Thust, A., Coene, W. M. J., Op de Beeck, M. & Van Dyck, D. Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211–230 (1996).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  36. Anisimov, V. I., Aryasetiawan, F. & Liechtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No DE-AC02-05CH1123. The authors from Berkeley would like to acknowledge the support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. J.S. acknowledges support from the Alexander von Humboldt Foundation. Y.H.C. would also like to acknowledge the support of the National Science Council, R.O.C., under contract No NSC 97-3114-M-009-001. A.R. and S.G. acknowledge support from Deutsche Forschungsgemeinschaft through FOR 520 and Deutsche Akademische Austauschdienst through GE 1202/5-1, and N.A.S. acknowledges support from NSF DMR Award No DMR-0605852 and the Miller Institute for Basic Research in Science, UC Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Seidel.

Supplementary information

Supplementary Information

Supplementary Information (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidel, J., Martin, L., He, Q. et al. Conduction at domain walls in oxide multiferroics. Nature Mater 8, 229–234 (2009). https://doi.org/10.1038/nmat2373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing