Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits

Abstract

The use of organic materials presents a tremendous opportunity to significantly impact the functionality and pervasiveness of large-area electronics. Commercialization of this technology requires reduction in manufacturing costs by exploiting inexpensive low-temperature deposition and patterning techniques, which typically lead to lower device performance. We report a low-cost approach to control the microstructure of solution-cast acene-based organic thin films through modification of interfacial chemistry. Chemically and selectively tailoring the source/drain contact interface is a novel route to initiating the crystallization of soluble organic semiconductors, leading to the growth on opposing contacts of crystalline films that extend into the transistor channel. This selective crystallization enables us to fabricate high-performance organic thin-film transistors and circuits, and to deterministically study the influence of the microstructure on the device characteristics. By connecting device fabrication to molecular design, we demonstrate that rapid film processing under ambient room conditions and high performance are not mutually exclusive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures and OTFT schematic cross-section.
Figure 2: Representative d.c. electrical characteristics for a diF-TESADT TFT.
Figure 3: Optical micrographs of diF-TESADT TFTs.
Figure 4: Temperature dependence of the effective field-effect mobility in the saturation regime.
Figure 5: Photograph, optical micrograph and electrical characteristics for diF-TESADT TFT circuits on a flexible plastic substrate.

Similar content being viewed by others

References

  1. Horowitz, G. Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998).

    Article  CAS  Google Scholar 

  2. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  3. Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).

    Article  CAS  Google Scholar 

  4. Sheraw, C. D. et al. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. 80, 1088–1090 (2002).

    Article  CAS  Google Scholar 

  5. Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).

    Article  CAS  Google Scholar 

  6. Baude, P. F. et al. Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett. 82, 3964 (2003).

    Article  CAS  Google Scholar 

  7. Noguchi, Y., Sekitani, T. & Someya, T. Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers. Appl. Phys. Lett. 89, 253507 (2006).

    Article  Google Scholar 

  8. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  9. Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007).

    Article  CAS  Google Scholar 

  10. Jackson, T. N. Organic semiconductors: Beyond Moore’s law. Nature Mater. 4, 581–582 (2005).

    Article  CAS  Google Scholar 

  11. Gundlach, D. J. Low-power, big impact. Nature Mater. 6, 173–174 (2007).

    Article  CAS  Google Scholar 

  12. Berggren, M., Nilsson, D. & Robinson, N. D. Organic materials for printed electronics. Nature Mater. 6, 3–5 (2007).

    Article  CAS  Google Scholar 

  13. Kane, M. G. et al. Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett. 21, 534–536 (2000).

    Article  CAS  Google Scholar 

  14. Steudel, S., Myny, K., De Vusser, S., Genoe, J & Heremans, P. Patterning of organic thin film transistors by oxygen plasma etch. Appl. Phys. Lett. 89, 183503 (2006).

    Article  Google Scholar 

  15. Kymissis, I., Dimitrakopoulos, C. D. & Purushothaman, S. Patterning pentacene organic thin film transistors. J. Vac. Sci. Technol. B 20, 956–959 (2002).

    Article  CAS  Google Scholar 

  16. Loo, Y. L., Willet, R. L., Baldwin, K. W. & Rogers, J. A. Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 124, 7654–7655 (2002).

    Article  CAS  Google Scholar 

  17. Hines, D. R. et al. Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates. Appl. Phys. Lett. 86, 163101 (2005).

    Article  Google Scholar 

  18. Blanchet, G. B., Loo, Y. L., Rogers, J. A., Gao, F. & Fincher, C. R. Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463–465 (2003).

    Article  CAS  Google Scholar 

  19. Choi, H. Y., Kim, S. H. & Jang, J. Self-organized organic thin-film transistors on plastic. Adv. Mater. 16, 732–736 (2004).

    Article  CAS  Google Scholar 

  20. Steudel, S., Janssen, D., Verlaak, S., Genoe, J & Heremans, P. Patterned growth of pentacene. Appl. Phys. Lett. 85, 5550–5552 (2004).

    Article  CAS  Google Scholar 

  21. Briseno, A. et al. Patterned growth of large oriented organic semiconductor single crystals on self-assembled monolayer templates. J. Am. Chem. Soc. 127, 12164–12165 (2005).

    Article  CAS  Google Scholar 

  22. Briseno, A. et al. Patterning organic crystal transistor arrays. Nature 444, 913–917 (2006).

    Article  CAS  Google Scholar 

  23. Park, S. K., Kuo, C.-C., Anthony, J. E. & Jackson, T. N. IEEE International Electron Devices Meeting, 2005, IEDM Technical Digest 113–116 (The Institute of Electrical and Electronics Engineers, Piscataway, 2005).

    Google Scholar 

  24. Kuo, C.-C., Payne, M. M., Anthony, J. E. & Jackson, T. N. IEEE International Electron Devices Meeting, 2004 IEDM Technical Digest 373–376 (The Institute of Electrical and Electronics Engineers, Piscataway, 2004).

    Google Scholar 

  25. Payne, M. M., Parkin, S. R., Anthony, J. E., Kuo, C.-C. & Jackson, T. N. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2 V−1 s−1. J. Am. Chem. Soc. 127, 4986–4987 (2005).

    Article  CAS  Google Scholar 

  26. Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: Improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9486–9483 (2001).

    Article  Google Scholar 

  27. Anthony, J. E., Eaton, D. L. & Parkin, S. R. A road map to stable, soluble, easily crystallized pentacene derivatives. Org. Lett. 4, 15–18 (2002).

    Article  CAS  Google Scholar 

  28. Gundlach, D. J., Jia, L. L. & Jackson, T. N. Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes. IEEE Electron Device Lett. 22, 571–573 (2001).

    Article  CAS  Google Scholar 

  29. Kymissis, I., Dimitrakopoulos, C. D. & Purushothaman, S. High-performance bottom electrode organic thin-film transistors. IEEE Trans. Electron Devices 48, 1060–1064 (2001).

    Article  CAS  Google Scholar 

  30. Bock, C. et al. Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes. J. Appl. Phys. 100, 114517 (2006).

    Article  Google Scholar 

  31. Gundlach, D. J. et al. An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100, 024509 (2006).

    Article  Google Scholar 

  32. Dickey, K. C., Anthony, J. E. & Loo, Y.-L. Improving organic thin-film transistor performance through solvent vapor annealing of solution-processable triethysilylethynyl anthradithiophene. Adv. Mater. 18, 1721–1726 (2006).

    Article  CAS  Google Scholar 

  33. Reichenbächer, K., Süss, H. I. & Hulliger, J. Fluorine in crystal engineering—the little atom that could. Chem. Soc. Rev. 34, 22–30 (2005).

    Article  Google Scholar 

  34. Minari, T., Nemoto, T. & Isoda, S. Temperature and electric-field dependence of the mobility of a single-grain pentacene field-effect transistor. J. Appl. Phys. 99, 034506 (2006).

    Article  Google Scholar 

  35. Nelson, S. F., Lin, Y.-Y., Gundlach, D. J. & Jackson, T. N. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854–1856 (1998).

    Article  CAS  Google Scholar 

  36. Park, S. K. et al. 65th Device Research Conference Digest 23–24 (The Institute of Electrical and Electronics Engineers, Piscataway, 2007).

    Google Scholar 

  37. Subramanian, S. et al. Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. J. Am. Chem. Soc. (in the press).

Download references

Acknowledgements

Financial support under the Summer Undergraduate Research Fellowship (SURF) by the National Science Foundation is gratefully acknowledged by J.E.R. L.C.T., A.J.M. and B.H.H. acknowledge financial support from the National Research Council postdoctoral fellowship program. J.E.A. acknowledges the Office of Naval Research for financial support of synthesis efforts. D.J.G. acknowledges L. Loo, Princeton U., for many helpful discussions concerning nucleation and film microstructure, and B. Vogel, visiting assistant professor at Bucknell University, for assistance with preliminary differential scanning calorimetry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Gundlach.

Supplementary information

Supplementary Information

Supplementary figures S1–S6 (PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gundlach, D., Royer, J., Park, S. et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nature Mater 7, 216–221 (2008). https://doi.org/10.1038/nmat2122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing