Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes

Abstract

During physical exercise, increases in motor neuron activity stimulate the expression of muscle-specific genes through the myocyte enhancer factor 2 (MEF2) family of transcription factors. Elevations in intracellular calcium increase MEF2 activity via the phosphorylation-dependent inactivation of class II histone deacetylases (HDACs). In studies to determine the role of the cAMP responsive element binding protein (CREB) in skeletal muscle, we found that mice expressing a dominant-negative CREB transgene (M-ACREB mice) exhibited a dystrophic phenotype along with reduced MEF2 activity. Class II HDAC phosphorylation was decreased in M-ACREB myofibers due to a reduction in amounts of Snf1lk (encoding salt inducible kinase, SIK1), a CREB target gene that functions as a class II HDAC kinase. Inhibiting class II HDAC activity either by viral expression of Snf1lk or by the administration of a small molecule antagonist improved the dystrophic phenotype in M-ACREB mice, pointing to an important role for the SIK1-HDAC pathway in regulating muscle function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscle A-CREB (M-ACREB) mice exhibit a dystrophic phenotype.
Figure 2: Reduced phosphorylation of class II HDACs in M-ACREB mice.
Figure 3: CREB stimulates expression of the Ser/Thr kinase SIK1 in skeletal myocytes.
Figure 4: SIK1 regulates MEF2 activity by phosphorylating class II HDACs.
Figure 5: Disruption of class II HDAC activity rescues the dystrophic phenotype in M-ACREB mice.
Figure 6: Model showing the proposed role of CREB in skeletal muscle.

Similar content being viewed by others

References

  1. Wu, H. et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 20, 6414–6423 (2001).

    Article  CAS  Google Scholar 

  2. Bassel-Duby, R. & Olson, E.N. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 75, 19–37 (2006).

    Article  CAS  Google Scholar 

  3. Vega, R.B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell. Biol. 24, 8374–8385 (2004).

    Article  CAS  Google Scholar 

  4. Chang, S., Bezprozvannaya, S., Li, S. & Olson, E.N. An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc. Natl. Acad. Sci. USA 102, 8120–8125 (2005).

    Article  CAS  Google Scholar 

  5. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).

    Article  CAS  Google Scholar 

  6. West, A.E. et al. Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. USA 98, 11024–11031 (2001).

    Article  CAS  Google Scholar 

  7. Wu, Z. et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1á transcription and mitochondrial biogenesis in muscle cells. Proc. Natl. Acad. Sci. USA 103, 14379–14384 (2006).

    Article  CAS  Google Scholar 

  8. Handschin, C., Rhee, J., Lin, J., Tarr, P.T. & Spiegelman, B.M. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1α expression in muscle. Proc. Natl. Acad. Sci. USA 100, 7111–7116 (2003).

    Article  CAS  Google Scholar 

  9. Chen, A.E., Ginty, D.D. & Fan, C.M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433, 317–322 (2005).

    Article  CAS  Google Scholar 

  10. Bleckmann, S.C. et al. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol. Cell. Biol. 22, 1919–1925 (2002).

    Article  CAS  Google Scholar 

  11. Ahn, S. et al. A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol. Cell. Biol. 18, 967–977 (1998).

    Article  CAS  Google Scholar 

  12. De Cesare, D. & Sassone-Corsi, P. Transcriptional regulation by cyclic AMP-responsive factors. Prog. Nucleic Acid Res. Mol. Biol. 64, 343–369 (2000).

    Article  CAS  Google Scholar 

  13. Lonze, B.E. & Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  Google Scholar 

  14. Hummler, E. et al. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. USA 91, 5647–5651 (1994).

    Article  CAS  Google Scholar 

  15. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  Google Scholar 

  16. Brennan, K.J. & Hardeman, E.C. Quantitative analysis of the human α-skeletal actin gene in transgenic mice. J. Biol. Chem. 268, 719–725 (1993).

    CAS  PubMed  Google Scholar 

  17. Garry, D.J. et al. Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc. Natl. Acad. Sci. USA 97, 5416–5421 (2000).

    Article  CAS  Google Scholar 

  18. Watchko, J.F., O'Day, T.L. & Hoffman, E.P. Functional characteristics of dystrophic skeletal muscle: insights from animal models. J. Appl. Physiol. 93, 407–417 (2002).

    Article  Google Scholar 

  19. Li, H. & Capetanaki, Y. Regulation of the mouse desmin gene: transactivated by MyoD, myogenin, MRF4 and Myf5. Nucleic Acids Res. 21, 335–343 (1993).

    Article  CAS  Google Scholar 

  20. Milner, D.J., Weitzer, G., Tran, D., Bradley, A. & Capetanaki, Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell Biol. 134, 1255–1270 (1996).

    Article  CAS  Google Scholar 

  21. Li, Z. et al. Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev. Biol. 175, 362–366 (1996).

    Article  CAS  Google Scholar 

  22. Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102, 4459–4464 (2005).

    Article  CAS  Google Scholar 

  23. Molkentin, J.D. & Olson, E.N. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93, 9366–9373 (1996).

    Article  CAS  Google Scholar 

  24. McKinsey, T.A., Zhang, C.L., Lu, J. & Olson, E.N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    Article  CAS  Google Scholar 

  25. Zhang, C.L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  Google Scholar 

  26. Screaton, R.A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).

    Article  CAS  Google Scholar 

  27. van der Linden, A.M., Nolan, K.M. & Sengupta, P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J. 26, 358–370 (2006).

    Article  Google Scholar 

  28. Mikkelsen, U.R., Gissel, H., Fredsted, A. & Clausen, T. Excitation-induced cell damage and β2-adrenoceptor agonist stimulated force recovery in rat skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R265–R272 (2006).

    Article  CAS  Google Scholar 

  29. Talanian, J.L. et al. Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the onset of exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1094–R1099 (2006).

    Article  CAS  Google Scholar 

  30. Katoh, Y. et al. Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J. 273, 2730–2748 (2006).

    Article  CAS  Google Scholar 

  31. Kao, H.Y. et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem. 276, 47496–47507 (2001).

    Article  CAS  Google Scholar 

  32. Miska, E.A. et al. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res. 29, 3439–3447 (2001).

    Article  CAS  Google Scholar 

  33. Takemori, H., Katoh, Y., Horike, N., Doi, J. & Okamoto, M. ACTH-induced nucleocytoplasmic translocation of salt-inducible kinase. Implication in the protein kinase A-activated gene transcription in mouse adrenocortical tumor cells. J. Biol. Chem. 277, 42334–42343 (2002).

    Article  CAS  Google Scholar 

  34. Belfield, J.L., Whittaker, C., Cader, M.Z. & Chawla, S. Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J. Biol. Chem. 281, 27724–27732 (2006).

    Article  CAS  Google Scholar 

  35. Koo, S.H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1111 (2005).

    Article  CAS  Google Scholar 

  36. Fentzke, R.C., Korcarz, C.E., Lang, R.M., Lin, H. & Leiden, J.M. Dilated cardiomyopathy in transgenic mice expressing a dominant- negative CREB transcription factor in the heart. J. Clin. Invest. 101, 2415–2426 (1998).

    Article  CAS  Google Scholar 

  37. Ruiz, J.C., Conlon, F.L. & Robertson, E.J. Identification of novel protein kinases expressed in the myocardium of the developing mouse heart. Mech. Dev. 48, 153–164 (1994).

    Article  CAS  Google Scholar 

  38. Dubowitz, V. Histological and histochemical stains and reactions. in Muscle Biopsy. A Practical Approach (ed. Dubowitz, V.) 19–40 (Bailliere Tindall, London, 1985).

    Google Scholar 

  39. Koo, S.H. et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat. Med. 10, 530–534 (2004).

    Article  CAS  Google Scholar 

  40. Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  Google Scholar 

  41. Rabinowitz, J.E. et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76, 791–801 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Montminy lab for helpful discussions, N. Huff for technical assistance with the histology, M. Scadeng for X-ray analysis, and X. Zhang and L. Ouyang for help with microarray experiments. We thank E. Olson (University of Texas Southwestern Medical Center) for Mef2-luciferase and Mef2c expression constructs, T. McKinsey (Myogen, Inc.) for antibodies to pHDAC, M. Okamoto (Osaka Medical School, Japan) for antibodies to SIK1, and T.P. Yao (Duke University) for recombinant HDAC4. We also thank M. Weitzman (the Salk Institute) for AAV reagents. This work was supported by grants from the National Institutes of Health (National Institute of General Medical Sciences and National Institute of Diabetes and Digestive and Kidney Diseases) and the Kieckhefer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.B. performed animal and cell culture experiments. N.G. performed histological analyses and aided in biochemical studies. L.B. and T.W. provided expertise on the Shld-1 expression system. H.T. provided expertise and reagents for SIK1 analysis. G.D.S. performed histochemical analyses and provided expertise on muscle pathology. Experimental design, data analysis and manuscript preparation were carried out by R.B. and M.M.

Corresponding author

Correspondence to Marc Montminy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

M-ACREB transgenic animals develop progressive muscular dystrophy. (PDF 155 kb)

Supplementary Fig. 2

Absence of fibrosis, changes in fiber-type distribution and metabolic storage products in M-ACREB transgenic mice. (PDF 289 kb)

Supplementary Fig. 3

MEF2 target gene expression is reduced in skeletal muscles of M-ACREB mice. (PDF 61 kb)

Supplementary Fig. 4

SIK1 protein is induced by cAMP and reduced in M-ACREB tissue. (PDF 133 kb)

Supplementary Fig. 5

SIK1 phosphorylates class II HDACs. (PDF 137 kb)

Supplementary Fig. 6

RNAi mediated knockdown of SIK1 induces necrosis of C2C12 cells. (PDF 153 kb)

Supplementary Fig. 7

AAV-mediated delivery of SIK1 rescues the dystrophic phenotype in MACREB transgenic muscle. (PDF 174 kb)

Supplementary Methods (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berdeaux, R., Goebel, N., Banaszynski, L. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med 13, 597–603 (2007). https://doi.org/10.1038/nm1573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing