Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption

Abstract

Thiazolidinediones (TZDs) are widely used to treat type 2 diabetes mellitus; however, their use is complicated by systemic fluid retention. Along the nephron, the pharmacological target of TZDs, peroxisome proliferator-activated receptor-γ (PPARγ, encoded by Pparg), is most abundant in the collecting duct. Here we show that mice treated with TZDs experience early weight gain from increased total body water. Weight gain was blocked by the collecting duct–specific diuretic amiloride and was also prevented by deletion of Pparg from the collecting duct, using Ppargflox/flox mice. Deletion of collecting duct Pparg decreased renal Na+ avidity and increased plasma aldosterone. Treating cultured collecting ducts with TZDs increased amiloride-sensitive Na+ absorption and Scnn1g mRNA (encoding the epithelial Na+ channel ENaCγ) expression through a PPARγ-dependent pathway. These studies identify Scnn1g as a PPARγ target gene in the collecting duct. Activation of this pathway mediates fluid retention associated with TZDs, and suggests amiloride might provide a specific therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of TZDs on wild-type mice.
Figure 2: Characterization of AQP2-Cre × Ppargflox/flox versus wild-type mice.
Figure 3: Effect of pioglitazone on 22Na flux in cultured IMCDs.
Figure 4: Pioglitazone stimulates Scnn1g mRNA.

Similar content being viewed by others

References

  1. Yki-Jarvinen, H. Thiazolidinediones. N. Engl. J. Med. 351, 1106–1118 (2004).

    Article  Google Scholar 

  2. Mudaliar, S., Chang, A.R. & Henry, R.R. Thiazolidinediones, peripheral edema, and type 2 diabetes: incidence, pathophysiology, and clinical implications. Endocr. Pract. 9, 406–416 (2003).

    Article  Google Scholar 

  3. Page, R.L. II, Gozansky, W.S. & Ruscin, J.M. Possible heart failure exacerbation associated with rosiglitazone: case report and literature review. Pharmacotherapy 23, 945–954 (2003).

    Article  Google Scholar 

  4. King, K.A. & Levi, V.E. Prevalence of edema in patients receiving combination therapy with insulin and thiazolidinedione. Am. J. Health Syst. Pharm. 61, 390–393 (2004).

    Article  Google Scholar 

  5. Nesto, R. C-reactive protein, its role in inflammation, Type 2 diabetes and cardiovascular disease, and the effects of insulin-sensitizing treatment with thiazolidinediones. Diabet. Med. 21, 810–817 (2004).

    Article  CAS  Google Scholar 

  6. Nesto, R.W. et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation 108, 2941–2948 (2003).

    Article  Google Scholar 

  7. Guan, Y., Zhang, Y., Davis, L. & Breyer, M.D. Expression of peroxisome proliferator-activated receptors in urinary tract of rabbits and humans. Am. J. Physiol. 273, F1013–F1022 (1997).

    CAS  PubMed  Google Scholar 

  8. Yang, T. et al. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney. Am. J. Physiol. 277, F966–F973 (1999).

    Article  CAS  Google Scholar 

  9. Kleyman, T.R., Sheng, S., Kosari, F. & Kieber-Emmons, T. Mechanism of action of amiloride: a molecular prospective. Semin. Nephrol. 19, 524–532 (1999).

    CAS  PubMed  Google Scholar 

  10. Velazquez, H. & Wright, F.S. Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am. J. Physiol. 250, F1013–F1023 (1986).

    CAS  PubMed  Google Scholar 

  11. Stricklett, P.K., Nelson, R.D. & Kohan, D.E. Targeting collecting tubules using the aquaporin-2 promoter. Exp. Nephrol. 7, 67–74 (1999).

    Article  CAS  Google Scholar 

  12. Nelson, R.D. et al. Expression of an AQP2 Cre recombinase transgene in kidney and male reproductive system of transgenic mice. Am. J. Physiol. 275, C216–C226 (1998).

    Article  CAS  Google Scholar 

  13. Jones, J.R., Shelton, K.D., Guan, Y., Breyer, M.D. & Magnuson, M.A. Generation and functional confirmation of a conditional null PPARγ allele in mice. Genesis 32, 134–137 (2002).

    Article  CAS  Google Scholar 

  14. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  15. Suzuki, J., Furutoh, K. & Nishikibe, M. A new system using NMR technology for measurement of body composition in experimental animals. Nippon Yakurigaku Zasshi 123, 281–287 (2004).

    Article  CAS  Google Scholar 

  16. Schreyer, S.A., Lystig, T.C., Vick, C.M. & LeBoeuf, R.C. Mice deficient in apolipoprotein E but not LDL receptors are resistant to accelerated atherosclerosis associated with obesity. Atherosclerosis 171, 49–55 (2003).

    Article  CAS  Google Scholar 

  17. Taicher, G.Z., Tinsley, F.C., Reiderman, A. & Heiman, M.L. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal. Bioanal. Chem. 377, 990–1002 (2003).

    Article  CAS  Google Scholar 

  18. Whitehead, R.H., VanEeden, P.E., Noble, M.D., Ataliotis, P. & Jat, P.S. Establishment of conditionally immortalized epithelial cell lines from both colon and small intestine of adult H-2Kb-tsA58 transgenic mice. Proc. Natl. Acad. Sci. USA 90, 587–591 (1993).

    Article  CAS  Google Scholar 

  19. Schafer, J.A. Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am. J. Physiol. Renal Physiol. 283, F221–F235 (2002).

    Article  CAS  Google Scholar 

  20. Hummler, E. Epithelial sodium channel, salt intake, and hypertension. Curr. Hypertens. Rep. 5, 11–18 (2003).

    Article  Google Scholar 

  21. Garty, H. & Palmer, L.G. Epithelial sodium channels: function, structure, and regulation. Physiol. Rev. 77, 359–396 (1997).

    Article  CAS  Google Scholar 

  22. Barbry, P. & Hofman, P. Molecular biology of Na+ absorption. Am. J. Physiol. 273, G571–G585 (1997).

    CAS  PubMed  Google Scholar 

  23. Hummler, E., Merillat, A.M., Rubera, I., Rossier, B.C. & Beermann, F. Conditional gene targeting of the Scnn1a (αENaC) gene locus. Genesis 32, 169–172 (2002).

    Article  CAS  Google Scholar 

  24. Herring, S.W., Sadnik, I. & Moldave, K. Studies on the mechanism of action of a eukaryotic codon-dependent factor specific for initiator Met-tRNAf and ribosomal 40 S subunits. J. Biol. Chem. 257, 4882–4887 (1982).

    CAS  PubMed  Google Scholar 

  25. Leesnitzer, L.M. et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41, 6640–6650 (2002).

    Article  CAS  Google Scholar 

  26. Stec, D.E., Davisson, R.L., Haskell, R.E., Davidson, B.L. & Sigmund, C.D. Efficient liver-specific deletion of a floxed human angiotensinogen transgene by adenoviral delivery of Cre recombinase in vivo. J. Biol. Chem. 274, 21285–21290 (1999).

    Article  CAS  Google Scholar 

  27. Wang, Y., Krushel, L. & Edelman, G. Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl. Acad. Sci. USA 93, 3932–3936 (1996).

    Article  CAS  Google Scholar 

  28. Lee, C.H. et al. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302, 453–457 (2003).

    Article  CAS  Google Scholar 

  29. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  CAS  Google Scholar 

  30. Helledie, T. et al. The gene encoding the Acyl-CoA-binding protein is activated by peroxisome proliferator-activated receptor γ through an intronic response element functionally conserved between humans and rodents. J. Biol. Chem. 277, 26821–26830 (2002).

    Article  CAS  Google Scholar 

  31. Weisz, O.A. & Johnson, J.P. Noncoordinate regulation of ENaC: paradigm lost? Am. J. Physiol. Renal Physiol. 285, F833–F842 (2003).

    Article  CAS  Google Scholar 

  32. Konstas, A.A. & Korbmacher, C. The γ-subunit of ENaC is more important for channel surface expression than the β-subunit. Am. J. Physiol. Cell Physiol. 284, C447–C456 (2003).

    Article  CAS  Google Scholar 

  33. Volk, K.A., Husted, R.F., Sigmund, R.D. & Stokes, J.B. Overexpression of the epithelial Na+ channel subunit in collecting duct cells: interactions of Liddle's mutations and steroids on expression and function. J. Biol. Chem. 280, 18348–18354 (2005).

    Article  CAS  Google Scholar 

  34. Hong, G. et al. PPARγ activation enhances cell surface ENaCα via up-regulation of SGK1 in human collecting duct cells. FASEB J. 17, 1966–1968 (2003).

    Article  CAS  Google Scholar 

  35. Friedrich, B. et al. The serine/threonine kinases SGK2 and SGK3 are potent stimulators of the epithelial Na+ channel α,β,γ-ENaC. Pflugers Arch. 445, 693–696 (2003).

    Article  CAS  Google Scholar 

  36. Alvarez de la Rosa, D., Zhang, P., Naray- Fejes-Toth, A., Fejes-Toth, G. & Canessa, C.M. The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J. Biol. Chem. 274, 37834–37839 (1999).

    Article  CAS  Google Scholar 

  37. Song, J., Knepper, M.A., Hu, X., Verbalis, J.G. & Ecelbarger, C.A. Rosiglitazone activates renal sodium- and water-reabsorptive pathways and lowers blood pressure in normal rats. J. Pharmacol. Exp. Ther. 308, 426–433 (2004).

    Article  CAS  Google Scholar 

  38. Arakawa, K. et al. Actions of novel antidiabetic thiazolidinedione, T-174, in animal models of non-insulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br. J. Pharmacol. 125, 429–436 (1998).

    Article  CAS  Google Scholar 

  39. Ave, P., Colucci-Guyon, E., Babinet, C. & Huerre, M.R. An improved method to detect β-galactosidase activity in transgenic mice: a post-staining procedure on paraffin embedded tissue sections. Transgenic Res. 6, 37–40 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Zent for his critical reading of this manuscript and his comments. These studies were supported by the National Institute of Diabetes & Digestive & Kidney Disease grants DK37097 (to M.D.B.) and DK38226 (to J. Capdevila and M.D.B.), a US National Institutes of Health RO1 DK65074-01 to Y.G., an American Heart Association grant 160200B (to Y.G.) and a Genzyme renal innovative Award (to Y.G.). NMR fat determinations were performed through the Vanderbilt Mouse Metabolic Phenotyping Center (grant DK59637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D Breyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Location of candidate PPREs in mouse ENaCγ intron 1 sequence. (PDF 63 kb)

Supplementary Table 1

Length, weight and serum chemistries for AQP2Cre × Ppargflox/flox mice and Pparg wild-type mice (wt). (PDF 72 kb)

Supplementary Table 2

Electrophysiologic characterization and ion transport rates of Transwell® culture mouse IMCD cell monolayers. (PDF 55 kb)

Supplementary Table 3

Sequences used to search TESS for PPREs in mouse Scnn1 genes. (PDF 69 kb)

Supplementary Methods (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Y., Hao, C., Cha, D. et al. Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption. Nat Med 11, 861–866 (2005). https://doi.org/10.1038/nm1278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing