Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains

Abstract

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is the only described systemic autoimmune disease with established monogenic background, and the first autoimmune disorder localized outside the major histocompatibility complex (MHC) region. The primary biochemical defect in APECED is unknown. We have isolated a novel gene, AIRE, encoding for a putative nuclear protein featuring two PHD-type zinc-finger motifs, suggesting its involvement in transcriptional regulation. Five mutations in AIRE are reported in individuals with this disorder. This is the first report of a single-gene defect causing a systemic human autoimmune disease, providing a tool for exploring the molecular basis of autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Theofilopoulos, A.N. The basis of autoimmunity: II. Genetic predisposition. Immunol. Today 16, 150–159 (1995).

    Google Scholar 

  2. Campbell, R.D. & Milner, C.M. MHC genes in autoimmunity. Curr. Opin. Immunol. 5, 887–893 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Ahonen, P., Myllärniemi, S., Sipila, I. & Perheentupa, J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N. Engl. J. Med. 322, 1829–1836 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Zlotogora, J. & Shapiro, M.S. Polyglandular autoimmune syndrome type I among Iranian Jews. J. Med. Genet. 29, 824–826 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aaltonen, J., Björses, P., Sandkuijl, L., Perheentupa, J., J. & Peltonen, L. An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21. Nature Genet. 8, 83–87 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Aaltonen, J. et al. High-resolution physical and transcriptional mapping of the. autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res. 7, 820–829 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Björses, P. et al. Genetic homogeneity of autoimmune polyglandular disease type I. Am. J. Hum. Genet. 59, 879–886 (1996).

    PubMed  PubMed Central  Google Scholar 

  8. Buckler, A. et al. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA 88, 4005–4009 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaspo, M.L. et al. Model for transcript map of human chromosome 21: isolation of new coding sequences from exon and cDNA libraries. Hum. Mol. Genet. 4, 1291– (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Gibbons, R.J. et al. Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain. Nature Genet. 17, 146–148 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Elson, A. et al. The structure of the human liver-type phosphofructokinase gene. Genomics 7, 47–56 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas, A. & Skolnick, M.H. A probabilistic model for detecting coding regions in DNA sequences. IMAJ. Math. Appl. Med. Biol. 11, 149–160 (1994).

    Article  CAS  Google Scholar 

  14. Kulp, D., Haussler, D., Reese, M.G. & Eeckman, F.H. A generalized hidden Markov model for recognition of human genes in DNA. ISMB 4, 134–142 (1996).

    CAS  PubMed  Google Scholar 

  15. Levanon, D., Brandeis, M., Bernstein, Y. & Groner, Y. Common promoter features in human and mouse liver type phosphofructokinase gene. Biochem. Mol. Biol. Int. 35, 929–936 (1995).

    CAS  PubMed  Google Scholar 

  16. Heiskanen, M., Peltonen, L. & Palotie, A. Visual mapping by high resolution FISH. Trends Genet. 12, 379–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Mount, S.M. A catalogue of splice junction sequences. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brendel, V., Bucher, P., Nourbakhsh, I., Blaisdell, B.E. & Karlin, S. Methods and algorithms for statistical analysis of protein sequences. Proc. Natl. Acad. Sci. USA 89, 2002–2006 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dingwall, C. & Laskey, R.A. Nuclear targeting sequences-a consensus? TrendsBiohem. Sci. 16, 478–481 (1991).

    CAS  Google Scholar 

  20. Aasland, R., Gibson, T.J. & Stewart, A.F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thenot, S., Henriquet, C., Rochefort, H. & Cavailles, V. Differential interaction of nuclear receptors with the putative human transcriptional coactivator hTIFL. J. Biol. Chem. 272, 12062–12068 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, S.S. et al. A novel member of the RING finger family, KRIP-1,associates with the KRAB-A transcriptional represser domain of zinc finger proteins. Proc. Natl. Acad. Sci. USA 19, 15299–15304 (1996).

    Article  Google Scholar 

  24. Ge, Q., Nilasena, D.S., O'Brien, C.A., Frank, M.B. & Targoff, I. Molecular analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen. J. Clin. Invest. 96, 1730–1737 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Bettinardi, A. et al. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. Blood 89, 902–909 (1997).

    CAS  PubMed  Google Scholar 

  27. Ahonen, P., Miettinen, A. & Perheentupa, J. Adrenal and steroidal cell antibodies in patients with autoimmune polyglandular disease type I and risk of adrenocortical and ovarian failure. J. Clin. Endocrinol. Metab. 64, 494–500 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Fidel, P.L. Jr, & Sobel, J.D. The role of cell-mediated immunity in candidiasis. Trends Microbiol. 2, 202–206 (1994).

    Article  PubMed  Google Scholar 

  29. Ahonen, P., Koskimies, S., Lokki, M.L., Tiilikainen, A. & Perheentupa, J. The expression of autoimmune polyglandular disease type I appears associated with several HLA-A antigens but not with HLA-DR. J. Clin. Endocrinol. Metab. 66, 1152–1157 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Krohn, K., Uibo, R., Aavik, E., Peterson, P. & Savilahti, K. Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17a-hydroxylase. Lancet 339, 770–773 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Syvänen, A.C., Aalto-Setälä, K., Kontula, K. & Söderlund, H. Direct sequencing of affinity captured amplified human DNA: application to the detection of apolipoprotein E polymorphisms. FEBS Lett. 258, 71–74 (1989).

    Article  PubMed  Google Scholar 

  34. Syvänen, A.C., Sajantila, A. & Lukka, M. Identification of individuals by analysis of biallelic DNA markers, using PCR and Solid-Phase minisequencing. Am. J. Hum. Genet. 52, 46–59 (1993).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leena Peltonen or Marie–Laure Yaspo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aaltonen, J., Björses, P., Perheentupa, J. et al. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17, 399–403 (1997). https://doi.org/10.1038/ng1297-399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing