Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Reply to 'Policy institutions and forest carbon'

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Weidema, B. Market Information in Life Cycle Assessment (Danish Environmental Protection Agency, 2003).

    Google Scholar 

  2. Milà i Canals, L. et al. Key elements in a framework for land use impact assessment within LCA. Int. J. Life Cycle Assess. 12, 5–15 (2007).

    Article  Google Scholar 

  3. Finnveden, G. et al. Recent developments in life cycle assessment. J. Environ. Manage. 91, 1–21 (2009).

    Article  Google Scholar 

  4. Helin, T., Sokka, L., Soimakallio, S., Pingoud, K. & Pajula, T. Approaches for inclusion of forest carbon cycle in life cycle assessment — a review. GCB Bioenergy 5, 475–486 (2013).

    Article  CAS  Google Scholar 

  5. Marland, G. & Schlamadinger, B. Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass Bioenergy 13, 389–397 (1997).

    Article  CAS  Google Scholar 

  6. Ximenes, F., George, B., Cowie, A., Williams, J. & Kelly, G. Greenhouse gas balance of native forests in New South Wales, Australia. Forests 3, 653–683 (2012).

    Article  Google Scholar 

  7. Lamers, P., Junginger, M., Dymond, C. C. & Faaij, A. Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy 6, 44–60 (2014).

    Article  Google Scholar 

  8. Ekvall, T. & Weidema, B. System boundaries and input data in consequential life cycle inventory analysis. Int. J. Life Cycle Assess. 9, 161–171 (2004).

    Article  Google Scholar 

  9. Bento, A. & Klotz, R. Climate policy decisions require policy-based lifecycle analysis. Environ. Sci. Technol. 48, 5379–5387 (2014).

    Article  CAS  Google Scholar 

  10. Plevin, R., Delucchi, M. & Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 18, 73–83 (2014).

    Article  Google Scholar 

  11. Weidema, B., Frees, N. & Nielsen, A.-M. Marginal production technologies for life cycle inventories. Int J. Life Cycle Assess. 4, 48–56 (1999).

    Article  Google Scholar 

  12. Earles J. & Halog, A. Consequential life cycle assessment: a review. Int J. Life Cycle Assess. 16, 445–453 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Macintosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macintosh, A., Keith, H. & Lindenmayer, D. Reply to 'Policy institutions and forest carbon'. Nature Clim Change 6, 805–806 (2016). https://doi.org/10.1038/nclimate3094

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3094

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing