Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu

Abstract

Fic proteins are ubiquitous in all of the domains of life and have critical roles in multiple cellular processes through AMPylation of (transfer of AMP to) target proteins. Doc from the doc-phd toxin-antitoxin module is a member of the Fic family and inhibits bacterial translation by an unknown mechanism. Here we show that, in contrast to having AMPylating activity, Doc is a new type of kinase that inhibits bacterial translation by phosphorylating the conserved threonine (Thr382) of the translation elongation factor EF-Tu, rendering EF-Tu unable to bind aminoacylated tRNAs. We provide evidence that EF-Tu phosphorylation diverged from AMPylation by antiparallel binding of the NTP relative to the catalytic residues of the conserved Fic catalytic core of Doc. The results bring insights into the mechanism and role of phosphorylation of EF-Tu in bacterial physiology as well as represent an example of the catalytic plasticity of enzymes and a mechanism for the evolution of new enzymatic activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Doc inhibits translation by inactivation of ternary complex formation.
Figure 2: Doc phosphorylates EF-Tu at the conserved Thr382.
Figure 3: Inhibition of phosphorylation of EF-Tu and its dephosphorylation.
Figure 4: Solution structure of the Doc–EF-Tu–GDP complex by SAXS.
Figure 5: Chemical shift mapping of the nucleotide and EF-Tu binding sites of Doc.
Figure 6: Proposed catalytic mechanism of the Doc-type Fic kinases.

Similar content being viewed by others

Accession codes

Accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

References

  1. Engel, P. et al. Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature 482, 107–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Woolery, A.R., Luong, P., Broberg, C.A. & Orth, K. AMPylation: something old is new again. Front Microbiol. 1, 113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yarbrough, M.L. & Orth, K. AMPylation is a new post-translational modiFICation. Nat. Chem. Biol. 5, 378–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Anantharaman, V. & Aravind, L. New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol. 4, R81 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Pino, A. et al. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. J. Biol. Chem. 283, 30821–30827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yarbrough, M.L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Feng, F. et al. A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Mukherjee, S. et al. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477, 103–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao, J., Worby, C.A., Mattoo, S., Sankaran, B. & Dixon, J.E. Structural basis of Fic-mediated adenylylation. Nat. Struct. Mol. Biol. 17, 1004–1010 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luong, P. et al. Kinetic and structural insights into the mechanism of AMPylation by VopS Fic domain. J. Biol. Chem. 285, 20155–20163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kinch, L.N., Yarbrough, M.L., Orth, K. & Grishin, N.V. Fido, a novel AMPylation domain common to Fic, Doc, and AvrB. PLoS ONE 4, e5818 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lehnherr, H., Maguin, E., Jafri, S. & Yarmolinsky, M.B. Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233, 414–428 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, M., Zhang, Y., Inouye, M. & Woychik, N.A. Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc. Natl. Acad. Sci. USA 105, 5885–5890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castro-Roa, D. & Zenkin, N. In vitro experimental system for analysis of transcription-translation coupling. Nucleic Acids Res. 40, e45 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Brunelle, J.L., Youngman, E.M., Sharma, D. & Green, R. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12, 33–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia-Pino, A. et al. Crystallization of Doc and the Phd-Doc toxin-antitoxin complex. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 1034–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaffer, J. & Adams, J.A. Detection of conformational changes along the kinetic pathway of protein kinase A using a catalytic trapping technique. Biochemistry 38, 12072–12079 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Vesper, O. et al. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147–157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Winther, K.S. & Gerdes, K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc. Natl. Acad. Sci. USA 108, 7403–7407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamaguchi, Y. & Inouye, M. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Prog. Mol. Biol. Transl. Sci. 85, 467–500 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Song, H., Parsons, M.R., Rowsell, S., Leonard, G. & Phillips, S.E. Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 Å resolution. J. Mol. Biol. 285, 1245–1256 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Konarev, P.V., Petoukhov, M.V., Volkov, V.V. & Svergun, D.I. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 (2006).

    Article  CAS  Google Scholar 

  24. Park, S.J., Borin, B.N., Martinez-Yamout, M.A. & Dyson, H.J. The client protein p53 adopts a molten globule-like state in the presence of Hsp90. Nat. Struct. Mol. Biol. 18, 537–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Gray, J.J. et al. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331, 281–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lehnherr, H. & Yarmolinsky, M.B. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 3274–3277 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneidman-Duhovny, D., Hammel, M. & Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campanacci, V., Mukherjee, S., Roy, C.R. & Cherfils, J. Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO J. 32, 1469–1477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKinley, J.E. & Magnuson, R.D. Characterization of the Phd repressor-antitoxin boundary. J. Bacteriol. 187, 765–770 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakai, A. et al. Evolution of enzymatic activities in the enolase superfamily: stereochemically distinct mechanisms in two families of cis,cis-muconate lactonizing enzymes. Biochemistry 48, 1445–1453 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Mildvan, A.S. et al. Structures and mechanisms of Nudix hydrolases. Arch. Biochem. Biophys. 433, 129–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Winther, K.S. & Gerdes, K. Regulation of enteric vapBC transcription: induction by VapC toxin dimer-breaking. Nucleic Acids Res. 40, 4347–4357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lippmann, C. et al. Prokaryotic elongation factor Tu is phosphorylated in vivo. J. Biol. Chem. 268, 601–607 (1993).

    CAS  PubMed  Google Scholar 

  35. Defeu Soufo, H.J. et al. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc. Natl. Acad. Sci. USA 107, 3163–3168 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cusack, N.J., Pearson, J.D. & Gordon, J.L. Stereoselectivity of ectonucleotidases on vascular endothelial cells. Biochem. J. 214, 975–981 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lycan, D.E. & Danna, K.J. Characterization of the 5′ termini of purified nascent simian virus 40 late transcripts. J. Virol. 45, 264–274 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Boon, K. et al. Isolation and functional analysis of histidine-tagged elongation factor Tu. Eur. J. Biochem. 210, 177–183 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. De Gieter, S., Loris, R., van Nuland, N.A. & Garcia-Pino, A. 1H, 13C, and 15N backbone and side-chain chemical shift assignment of the toxin Doc in the unbound state. Biomol. NMR Assign. 10.1007/s12104-013-9471-9 (2013).

  40. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Johnson, B.A. Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol. Biol. 278, 313–352 (2004).

    CAS  PubMed  Google Scholar 

  42. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    CAS  PubMed  Google Scholar 

  43. Meiler, J. & Baker, D. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65, 538–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  45. Wriggers, W. Using Situs for the integration of multi-resolution structures. Biophys. Rev. 2, 21–27 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rambo, R.P. & Tainer, J.A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. van Nues and D. Forrest for critical reading of the manuscript, A. Talavera for assistance with the docking experiments and J. Gray for support with MS. This work was supported by UK Biotechnology and Biological Sciences Research Council and the European Research Council (ERC-2007-StG 202994-MTP) to N.Z., the Onderzoeksraad of the VUB, Fonds Wetenschappelijk Onderzoek (FWO)-Vlaanderen, VIB and the Hercules Foundation. The authors acknowledge the use of the EMBL beamline P12 at the DESY synchrotron (Hamburg, Germany).

Author information

Authors and Affiliations

Authors

Contributions

D.C.-R. performed biochemical experiments; S.D.G. prepared Doc and Phd samples; A.G.-P. prepared Doc and Phd samples, performed NMR and SAXS experiments, analyzed structural data and wrote the paper; N.A.J.v.N. performed NMR experiments; R.L. analyzed structural data and wrote the paper; N.Z. wrote the paper and supervised the project.

Corresponding authors

Correspondence to Abel Garcia-Pino or Nikolay Zenkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–3. (PDF 1667 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro-Roa, D., Garcia-Pino, A., De Gieter, S. et al. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9, 811–817 (2013). https://doi.org/10.1038/nchembio.1364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1364

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology