Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SDPR induces membrane curvature and functions in the formation of caveolae

Abstract

Caveolae are plasma membrane invaginations with a characteristic flask-shaped morphology. They function in diverse cellular processes, including endocytosis. The mechanism by which caveolae are generated is not fully understood, but both caveolin proteins and PTRF (polymerase I and transcript release factor, also known as cavin) are important. Here we show that loss of SDPR (serum deprivation protein response) causes loss of caveolae. SDPR binds directly to PTRF and recruits PTRF to caveolar membranes. Overexpression of SDPR, unlike PTRF, induces deformation of caveolae and extensive tubulation of the plasma membrane. The B-subunit of Shiga toxin (STB) also induces membrane tubulation and these membrane tubes also originate from caveolae. STB colocalizes extensively with both SDPR and caveolin 1. Loss of caveolae reduces the propensity of STB to induce membrane tubulation. We conclude that SDPR is a membrane-curvature-inducing component of caveolae, and that STB-induced membrane tubulation is facilitated by caveolae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SDPR is a caveolar protein, but forms tubes at high expression levels.
Figure 2: SDPR is present in protein complexes with PTRF and caveolin 1 and can bind directly to PTRF in vitro.
Figure 3: SDPR is required for the formation of caveolar membrane invaginations, and induces formation of elongated caveolae when overexpressed.
Figure 4: SDPR recruits PTRF to caveolae and the plasma membrane.
Figure 5: SDPR overexpression induces membrane tubes derived from caveolae.
Figure 6: Membrane tubes induced by STB colocalize with SDPR and caveolin 1.
Figure 7: STB-induced membrane tubes grow from caveolae, and their formation is facilitated by caveolar proteins.

Similar content being viewed by others

References

  1. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  Google Scholar 

  2. Kirchhausen, T. Three ways to make a vesicle. Nature Rev. Mol. Cell Biol. 1, 187–198 (2000).

    Article  CAS  Google Scholar 

  3. Stagg, S. M., LaPointe, P. & Balch, W. E. Structural design of cage and coat scaffolds that direct membrane traffic. Curr. Opin. Struct. Biol. 17, 221–228 (2007).

    Article  CAS  Google Scholar 

  4. Lajoie, P. & Nabi, I. R. Regulation of raft-dependent endocytosis. J. Cell Mol. Med. 11, 644–653 (2007).

    Article  CAS  Google Scholar 

  5. Bauer, M. & Pelkmans, L. A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett. 580, 5559–5564 (2006).

    Article  CAS  Google Scholar 

  6. Le Lay, S. & Kurzchalia, T. V. Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim. Biophys. Acta 1746 (3), 322–333 (2005).

    Article  CAS  Google Scholar 

  7. Parton, R. G. & Richards, A. A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4, 724–738 (2003).

    Article  CAS  Google Scholar 

  8. Stan, R. V. Structure and function of endothelial caveolae. Microsc. Res. Tech. 57, 350–364 (2002).

    Article  Google Scholar 

  9. Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004).

    Article  CAS  Google Scholar 

  10. Kirkham, M. et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Cell Biol. 168, 465–476 (2005).

    Article  CAS  Google Scholar 

  11. Kumari, S. & Mayor, S. ARF1 is directly involved in dynamin-independent endocytosis. Nature Cell Biol. 10, 30–41 (2008).

    Article  CAS  Google Scholar 

  12. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    Article  Google Scholar 

  13. Lauvrak, S. U. et al. Shiga toxin regulates its entry in a Syk-dependent manner. Mol. Biol. Cell 17, 1096–1109 (2006).

    Article  CAS  Google Scholar 

  14. Sandvig, K. et al. Pathways followed by protein toxins into cells. Int. J. Med. Microbiol. 293, 483–490 (2004).

    Article  CAS  Google Scholar 

  15. Liu, L. & Pilch, P. F. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J. Biol. Chem. 283, 4314–4322 (2008).

    Article  CAS  Google Scholar 

  16. Hill, M. M. et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132, 113–124 (2008).

    Article  CAS  Google Scholar 

  17. Vinten, J., Johnsen, A. H., Roepstorff, P., Harpoth, J. & Tranum-Jensen, J. Identification of a major protein on the cytosolic face of caveolae. Biochim. Biophys. Acta 1717, 34–40 (2005).

    Article  CAS  Google Scholar 

  18. Aboulaich, N., Vainonen, J. P., Stralfors, P. & Vener, A. V. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem. J. 383, 237–248 (2004).

    Article  CAS  Google Scholar 

  19. Vinten, J. et al. A 60-kDa protein abundant in adipocyte caveolae. Cell Tissue Res. 305, 99–106 (2001).

    Article  CAS  Google Scholar 

  20. Liu, L. et al. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 8, 310–317 (2008).

    Article  Google Scholar 

  21. Gustincich, S. & Schneider, C. Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ. 4, 753–760 (1993).

    CAS  PubMed  Google Scholar 

  22. Gustincich, S. et al. The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics 57, 120–129 (1999).

    Article  CAS  Google Scholar 

  23. Mineo, C., Ying, Y. S., Chapline, C., Jaken, S. & Anderson, R. G. Targeting of protein kinase Cα to caveolae. J. Cell Biol. 141, 601–610 (1998).

    Article  CAS  Google Scholar 

  24. Burgener, R., Wolf, M., Ganz, T. & Baggiolini, M. Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem. J. 269, 729–734 (1990).

    Article  CAS  Google Scholar 

  25. Izumi, Y. et al. A protein kinase Cδ-binding protein SRBC whose expression is induced by serum starvation. J. Biol. Chem. 272, 7381–7389 (1997).

    Article  CAS  Google Scholar 

  26. Ogata, T. et al. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol. Cell Biol. 28, 3424–3436 (2008).

    Article  CAS  Google Scholar 

  27. Tagawa, M. et al. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am. J. Physiol. Cell Physiol. 295, C490–498 (2008).

    Article  CAS  Google Scholar 

  28. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  29. Razani, B. et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138 (2001).

    Article  CAS  Google Scholar 

  30. Pelkmans, L. & Zerial, M. Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436, 128–133 (2005).

    Article  CAS  Google Scholar 

  31. Kirkham, M. et al. Evolutionary analysis and molecular dissection of caveola biogenesis. J. Cell Sci. 121, 2075–2086 (2008).

    Article  CAS  Google Scholar 

  32. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    Article  CAS  Google Scholar 

  33. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nature Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  34. Nichols, B. J. et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153, 529–541 (2001).

    Article  CAS  Google Scholar 

  35. Sandvig, K. & van Deurs, B. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J. 19, 5943–5950 (2000).

    Article  CAS  Google Scholar 

  36. Fuchs, E. et al. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. J. Cell Biol. 177, 1133–1143 (2007).

    Article  CAS  Google Scholar 

  37. Liou, W., Geuze, H. J. & Slot, J. W. Improving structural integrity of cryosections for immunogold labeling. Histochem. Cell Biol. 106, 41–58 (1996).

    Article  CAS  Google Scholar 

  38. Slot, J. W., Geuze, H. J., Gigengack, S., Lienhard, G. E. & James, D. E. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113, 123–135 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Riento, H. Pelham and S. Munro for comments on the manuscript. C.G.H. is supported by the MRC, Cowi Foundation, Ulla og Mogens Andersens Fond, Oticon Fonden, Julie Von Mullens Fond, Fuhrmann-Fonden, Krista og Viggo Petersen's Fond, Reinholdt W Jorck og Hustrus Fond, Christian og Ottilia Brorsons Rejselegat for Yngre Videnskabsmœnd- og Kvinder, Niels Bohr Fond and Henry Shaw's Legat. N.A.B. is supported by the MRC.

Author information

Authors and Affiliations

Authors

Contributions

C.G.H. carried out the majority of experiments and data analysis, and participated in project planning; N.A.B. carried out cryo-electron microscopy; G.H. carried out all other electron microscopy and B.J.N. carried out some experiments and data analysis, participated in project planning, and wrote the paper.

Corresponding author

Correspondence to Benjamin J. Nichols.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3449 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2884 kb)

Supplementary Information

Supplementary Movie 2 (MOV 916 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, C., Bright, N., Howard, G. et al. SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11, 807–814 (2009). https://doi.org/10.1038/ncb1887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing