Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin

Abstract

How vascular endothelial growth factor (VEGF) induces vascular permeability, its first described function, remains poorly understood. Here, we provide evidence of a novel signalling pathway by which VEGF stimulation promotes the rapid endocytosis of a key endothelial cell adhesion molecule, VE-cadherin, thereby disrupting the endothelial barrier function. This process is initiated by the activation of the small GTPase Rac by VEGFR-2 through the Src-dependent phosphorylation of Vav2, a guanine nucleotide-exchange factor. Rac activation, in turn, promotes the p21-activated kinase (PAK)-mediated phosphorylation of a highly conserved motif within the intracellular tail of VE-cadherin. Surprisingly, this results in the recruitment of β-arrestin2 to serine-phosphorylated VE-cadherin, thereby promoting its internalization into clathrin-coated vesicles and the consequent disassembly of intercellular junctions. Ultimately, this novel biochemical route by which VEGF promotes endothelial permeability through the β-arrestin2-dependent endocytosis of VE-cadherin may help identify new therapeutic targets for the treatment of many human diseases that are characterized by vascular leakage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGF promotes VE-cadherin endocytosis.
Figure 2: VEGF induces the endocytosis of VE-cadherin by phosphorylating Vav2 through Src.
Figure 3: A highly conserved SVR motif in human VE-cadherin is a potential target for PAK phosphorylation.
Figure 4: Ser 665 regulates VE-cadherin endocytosis and VEGF-induced permeability.
Figure 5: A role for Ser 665 in VEGF induced coclustering of β-arrestin2 with VE-cadherin.
Figure 6: β-arrestin2 is involved in VEGF-induced VE-cadherin endocytosis and permeability.
Figure 7: Schematic representation of a model of the molecular mechanisms by which VEGF promotes VE-cadherin internalization and vascular permeability by VE-cadherin receptor β-arrestin-dependent endocytosis (RADE) on the activation of the Vav2–Rac–PAK signalling pathway through VEGFR-2 and Src.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  Google Scholar 

  2. Senger, D. R., Perruzzi, C. A., Feder, J. & Dvorak, H. F. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 46, 5629–5632 (1986).

    CAS  PubMed  Google Scholar 

  3. Connolly, D. T. et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Invest. 84, 1470–1478 (1989).

    Article  CAS  Google Scholar 

  4. Carmeliet, P. & Collen, D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann. NY Acad. Sci. 902, 249–262 (2000).

    Article  CAS  Google Scholar 

  5. Cross, M. J., Dixelius, J., Matsumoto, T. & Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem. Sci. 28, 488–494 (2003).

    Article  CAS  Google Scholar 

  6. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).

    Article  CAS  Google Scholar 

  7. Weis, S. M. & Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497–504 (2005).

    Article  CAS  Google Scholar 

  8. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer 3, 401–410 (2003).

    Article  CAS  Google Scholar 

  9. Eliceiri, B. P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  Google Scholar 

  10. Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    Article  CAS  Google Scholar 

  11. Weis, S. et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J. Clin. Invest. 113, 885–894 (2004).

    Article  CAS  Google Scholar 

  12. Paul, R. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nature Med. 7, 222–227 (2001).

    Article  CAS  Google Scholar 

  13. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    Article  CAS  Google Scholar 

  14. Lampugnani, M. G. et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol. Biol. Cell 13, 1175–1189 (2002).

    Article  CAS  Google Scholar 

  15. Dejana, E. Endothelial cell-cell junctions: happy together. Nature Rev. Mol. Cell Biol. 5, 261–270 (2004).

    Article  CAS  Google Scholar 

  16. Corada, M. et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl Acad. Sci. USA 96, 9815–9820 (1999).

    Article  CAS  Google Scholar 

  17. May, C. et al. Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood 105, 4337–4344 (2005).

    Article  CAS  Google Scholar 

  18. Fukuhara, S. et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell–cell contact to enhance endothelial barrier function through an Epac–Rap1 signaling pathway. Mol. Cell. Biol. 25, 136–146 (2005).

    Article  CAS  Google Scholar 

  19. Chiariello, M., Marinissen, M. J. & Gutkind, J. S. Regulation of c-myc expression by PDGF through Rho GTPases. Nature Cell Biol. 3, 580–586 (2001).

    Article  CAS  Google Scholar 

  20. Bruckner, K. et al. The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev. Cell 7, 73–84 (2004).

    Article  Google Scholar 

  21. Braga, V. M., Betson, M., Li, X. & Lamarche-Vane, N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell–cell adhesion in normal human keratinocytes. Mol. Biol. Cell 11, 3703–3721 (2000).

    Article  CAS  Google Scholar 

  22. Braga, V. M., Del Maschio, A., Machesky, L. & Dejana, E. Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol. Biol. Cell 10, 9–22 (1999).

    Article  CAS  Google Scholar 

  23. Xiao, K. et al. p120–catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol. Biol. Cell 16, 5141–5151 (2005).

    Article  CAS  Google Scholar 

  24. Stockton, R. A., Schaefer, E. & Schwartz, M. A. p21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 279, 46621–46630 (2004).

    Article  CAS  Google Scholar 

  25. Kooistra, M. R. H., Corada, M., Dejana, E. & Bos, J. L. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett. 579, 4966–4972 (2005).

    Article  CAS  Google Scholar 

  26. Antonetti, D. A., Barber, A. J., Hollinger, L. A., Wolpert, E. B. & Gardner, T. W. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and retinopathy and tumors. J. Biol. Chem. 274, 23463–23467 (1999).

    Article  CAS  Google Scholar 

  27. Benovic, J. L. et al. Functional desensitization of the isolated β-adrenergic receptor by the β-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl Acad. Sci. USA 84, 8879–8882 (1987).

    Article  CAS  Google Scholar 

  28. Marchese, A., Chen, C., Kim, Y. M. & Benovic, J. L. The ins and outs of G protein-coupled receptor trafficking. Trends Biochem. Sci. 28, 369–376 (2003).

    Article  CAS  Google Scholar 

  29. Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).

    Article  CAS  Google Scholar 

  30. Crosby, C. V. et al. VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood 105, 2771–2776 (2005).

    Article  CAS  Google Scholar 

  31. Esser, S., Lampugnani, M. G., Corada, M., Dejana, E. & Risau, W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111, 1853–1865 (1998).

    CAS  PubMed  Google Scholar 

  32. Wong, E. Y. et al. Vascular endothelial growth factor stimulates dephosphorylation of the catenins p120 and p100 in endothelial cells. Biochem. J. 346, 209–216 (2000).

    Article  CAS  Google Scholar 

  33. Vincent, L. et al. Combretastain A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial–cadherin signaling. J. Clin. Invest. 115, 2992–3006 (2005).

    Article  CAS  Google Scholar 

  34. Abedi, H. & Zachary, I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272, 15442–15451 (1997).

    Article  CAS  Google Scholar 

  35. Eliceiri, B. P. et al. Src-mediated coupling of focal adhesion kinase to integrin α(v)β5 in vascular endothelial growth factor signaling. J. Cell Biol. 157, 149–160 (2002).

    Article  CAS  Google Scholar 

  36. Luttrell, L. M. et al. β-arrestin-dependent formation of 2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  Google Scholar 

  37. Palacios, F., Tushir, J. S., Fujita, Y. & D'Souza-Schorey, C. Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol. Cell. Biol. 25, 389–402 (2005).

    Article  CAS  Google Scholar 

  38. Chen, W. et al. Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394 (2003).

    Article  CAS  Google Scholar 

  39. Chen, W. et al. β-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 301, 1394–1397 (2003).

    Article  CAS  Google Scholar 

  40. Chen, W. et al. Activity-dependent internalization of smoothened mediated by β-arrestin 2 and GRK2. Science 306, 2257–2260 (2004).

    Article  CAS  Google Scholar 

  41. Wu, J.-H. et al. The adaptor protein β-arrestin2 enhances endocytosis of the low density lipoprotein receptor. J. Biol. Chem. 278, 44238–44245 (2003).

    Article  CAS  Google Scholar 

  42. Montaner, S. et al. The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood 104, 2903–2911 (2004).

    Article  CAS  Google Scholar 

  43. Kim, Y. M. & Benovic, J. L. Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J. Biol. Chem. 277, 30760–30768 (2002).

    Article  CAS  Google Scholar 

  44. Gavard, J. et al. Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J. Cell Sci. 117, 257–270 (2004).

    Article  CAS  Google Scholar 

  45. Lamalice, L., Houle, F., Jourdan, G. & Huot, J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23, 434–445 (2004).

    Article  CAS  Google Scholar 

  46. Sandilands, E. et al. RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Dev. Cell 7, 855–869 (2004).

    Article  CAS  Google Scholar 

  47. Ali, J., Liao, F., Martens, E. & Muller, W. A. Vascular endothelial cadherin (VE-cadherin): cloning and role in endothelial cell-cell adhesion. Microcirculation 4, 267–277 (1997).

    Article  CAS  Google Scholar 

  48. Xiao, K. et al. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J. Cell Biol. 163, 535–545 (2003).

    Article  CAS  Google Scholar 

  49. Xiao, K. et al. Mechanisms of VE-cadherin processing and degradation in microvascular endothelial cells. J. Biol. Chem. 278, 19199–19208 (2003).

    Article  CAS  Google Scholar 

  50. Potter, M. D., Barbero, S. & Cheresh, D. A. Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and β-catenin and maintains the cellular mesenchymal state. J. Biol. Chem. 280, 31906–31912 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful: to W.A. Muller (Weill Medical College of Cornell University, New York, NY) for the human VE-cadherin cDNA; to J.L. Benovic (Department of Biochemistry and Molecular Biology Thomas Jefferson University, Philadelphia, PA) for the arrestin antibodies; to M.C. Frame (The Beatson Institute for Cancer Research, Glasgow, UK) for the Src-GFP plasmid; and to L. Lamalice and J. Huot (Université de Laval, Québec, Canada) for the VEGFR-2–HA plasmid. We also thank D. Martin for helpful advice on shRNA vectors, R. Castilho for genomic expression data, C. Murga and S. Fukuhara for preparation of GFP–β-arrestin2 plasmid. We also thank J. Basile and T. Bugge for critical reading of the manuscript. J.G. is supported by a fellowship from Fondation pour la Recherche Médicale (http://www.frm.org). This research was partially supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Dental and Craniofacial research (NIDCR).

Author information

Authors and Affiliations

Authors

Contributions

J.G. and J.S.G. planned the experimental design, analysed data and wrote the paper. J.G. conducted the experiments.

Corresponding author

Correspondence to J. Silvio Gutkind.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and S5 (PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavard, J., Gutkind, J. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8, 1223–1234 (2006). https://doi.org/10.1038/ncb1486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing