Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitivity and Resistance to Therapy

IGFBP7 participates in the reciprocal interaction between acute lymphoblastic leukemia and BM stromal cells and in leukemia resistance to asparaginase

Abstract

The interaction of acute lymphoblastic leukemia (ALL) blasts with bone marrow (BM) stromal cells (BMSCs) has a positive impact on ALL resistance to chemotherapy. We investigated the modulation of a series of putative asparaginase-resistance/sensitivity genes in B-precursor ALL cells upon coculture with BMSCs. Coculture with stromal cells resulted in increased insulin-like growth factor (IGF)-binding protein 7 (IGFBP7) expression by ALL cells. Assays with IGFBP7 knockdown ALL and stromal cell lines, or with addition of recombinant rIGFBP7 (rIGFBP7) to the culture medium, showed that IGFBP7 acts as a positive regulator of ALL and stromal cells growth, and significantly enhances in-vitro resistance of ALL to asparaginase. In these assays, IGFBP7 function occurred mainly in an insulin- and stromal-dependent manner. ALL cells were found to contribute substantially to extracellular IGFBP7 levels in the conditioned coculture medium. Diagnostic BM plasma from children with ALL had higher levels of IGFBP7 than controls. IGFBP7, in an insulin/IGF-dependent manner, enhanced asparagine synthetase expression and asparagine secretion by BMSCs, thus providing a stromal-dependent mechanism by which IGFBP7 protects ALL cells against asparaginase in this coculture system. Importantly, higher IGFBP7 mRNA levels were associated with lower leukemia-free survival (Cox regression model, P=0.003) in precursor B-cell Ph(−) ALL patients (n=147) treated with a contemporary polychemotherapy protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Steinherz PG, Gaynon PS, Breneman JC, Cherlow JM, Grossman NJ, Kersey JH et al. Cytoreduction and prognosis in acute lymphoblastic leukemia—the importance of early marrow response: report from the Childrens Cancer Group. J Clin Oncol 1996; 14: 389–398.

    Article  CAS  Google Scholar 

  2. Kaspers GJ, Pieters R, Van Zantwijk CH, Van wering ER, Van Der Does-Van Den Berg A, Veerman AJ . Prednisolone resistance in childhood acute lymphoblastic leukemia: vitro-vivo correlations and cross-resistance to other drugs. Blood 1998; 92: 259–266.

    CAS  PubMed  Google Scholar 

  3. Schmiegelow K, Nyvold C, Seyfarth J, Pieters R, Rottier MM, Knabe N et al. Post-induction residual leukemia in childhood acute lymphoblastic leukemia quantified by PCR correlates with in vitro prednisolone resistance. Leukemia 2001; 15: 1066–1071.

    Article  CAS  Google Scholar 

  4. Rocha JC, Cheng C, Liu W, Kishi S, Das S, Cook EH et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 2005; 105: 4752–4758.

    Article  CAS  Google Scholar 

  5. Pieters R, Kaspers GJL, van Wering ER, Huismans DR, Loonen AH, Hählen K et al. Cellular drug resistance profiles that might explain the prognostic value of immunophenotype and age in childhood acute lymphoblastic leukemia. Leukemia 1993; 7: 392–397.

    CAS  PubMed  Google Scholar 

  6. Ramakers-van Woerden NL, Pieters R, Hoelzer D, Slater RM, den Boer ML, Loonen AH et al. In vitro drug resistance profile of Philadelphia positive acute lymphoblastic leukemia is heterogeneous and related to age: a report of the Dutch and German Leukemia study Groups. Med Pediatr Oncol 2002; 38: 379–386.

    Article  CAS  Google Scholar 

  7. Aricó M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000; 342: 998–1006.

    Article  Google Scholar 

  8. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

    Article  Google Scholar 

  9. Ramakers-van Woerden NL, Pieters R, Loonen AH, Hubeek I, van Drunen E, Beverloo HB et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood 2000; 96: 1094–1099.

    CAS  PubMed  Google Scholar 

  10. Whitehead VM, Payment C, Cooley L, Lauer SJ, Mahoney DH, Shuster JJ et al. The association of the TEL-AML1 chromosomal translocation with the accumulation of methotrexate polyglutamates in lymphoblasts and with ploidy in childhood B-progenitor cells acute lymphoblastic leukemia: a Pediatric Oncology Group study. Leukemia 2001; 15: 1081–1088.

    Article  CAS  Google Scholar 

  11. Murti KG, Brown PS, Kumagai M, Campana D . Molecular interactions between human B-cell progenitors and the bone marrow microenvironment. Exp Cell Res 1996; 226: 47–58.

    Article  CAS  Google Scholar 

  12. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood 1992; 79: 2370–2377.

    CAS  PubMed  Google Scholar 

  13. Manabe A, Murti KG, Coustan-Smith E, Kumagai M, Behm FG, Raimondi SC et al. Adhesion dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells. Blood 1994; 83: 758–766.

    CAS  PubMed  Google Scholar 

  14. Bradstock K, Makrynikola V, Bianchi A, Byth K . Analysis of the mechanism of adhesion of precursor-B acute lymphoblastic leukemia cells to bone marrow fibroblasts. Blood 1993; 82: 3437–3444.

    CAS  PubMed  Google Scholar 

  15. Wu S, Korte A, Kebelmann-Betzing C, Gessner R, Henze G, Seeger K . Interaction of bone marrow stromal cells with lymphoblasts and effects of predinsolone on cytokine expression. Leuk Res 2005; 29: 63–72.

    Article  Google Scholar 

  16. Veiga JP, Costa LF, Sallana SE, Nadler LM, Cardoso AA . Leukemia-stimulated bone marrow endothelium promotes leukemia cell survival. Exp Hematol 2006; 34: 610–621.

    Article  CAS  Google Scholar 

  17. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF . Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 2000; 96: 1926–1932.

    CAS  PubMed  Google Scholar 

  18. Fortney JE, Zhao W, Wenger SL, Gibson LF . Bone marrow stromal cells regulate caspase 3 activity in leukemic cells during chemotherapy. Leuk Res 2001; 25: 901–907.

    Article  CAS  Google Scholar 

  19. Pifer J, Stephan RP, Lill-Elghanian DA, Le PT, Witte PL . Role of stromal cells and their products in protecting young and aged B-lineage precursors from dexamethasone-induced apoptosis. Mech Ageing Dev 2003; 124: 207–218.

    Article  CAS  Google Scholar 

  20. Hall BM, Fortney JE, Taylor L, Wood H, Wang L, Adams S et al. Stromal cells expressing elevated VCAM-1 enhance survival of B lineage tumor cells. Cancer Lett 2004; 207: 229–239.

    Article  CAS  Google Scholar 

  21. Wang L, Fortney JE, Gibson LF . Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt. Leuk Res 2004; 28: 733–742.

    Article  Google Scholar 

  22. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D . Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007; 117: 1049–1057.

    Article  CAS  Google Scholar 

  23. Wang L, Chen L, Benincosa J, Fortney J, Gibson LF . VEGF-induced phosphorylation of Bcl-2 influences B lineage leukemic cell response to apoptotic stimuli. Leukemia 2005; 19: 344–353.

    Article  CAS  Google Scholar 

  24. Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004; 351: 533–542.

    Article  CAS  Google Scholar 

  25. Brandalise SR, Pinheiro VR, Aguiar SS, Matsuda EI, Otubo R, Yunes JA et al. Benefits of the intermittent use of 6-mercaptopurine and methotrexate in maintenance treatment for low-risk acute lymphoblastic leukemia in children: randomized trial from the Brazilian Childhood Cooperative Group (GBTLI) Protocol ALL-99. J Clin Oncol 2010; 28: 1911–1918.

    Article  CAS  Google Scholar 

  26. Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E et al. Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 2003; 120: 846–849.

    Article  CAS  Google Scholar 

  27. Watzinger F, Lion T . Multiplex PCR for quality control of template RNA/cDNA in RT-PCR assays. Leukemia 1998; 12: 1984–1986.

    Article  CAS  Google Scholar 

  28. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program. Leukemia 2003; 17: 2474–2486.

    Article  CAS  Google Scholar 

  29. Puiatti M, Sodek L . Waterlogging affects nitrogen transport in the xylem of soybean. Plant Physiol Biochem 1999; 37: 767–773.

    Article  CAS  Google Scholar 

  30. Swat W, Ignatowicz L, Kisielow P . Detection of apoptosis of immature CD4+8+ thymocytes by flow cytometry. J Immunol Methods 1991; 137: 79–87.

    Article  CAS  Google Scholar 

  31. Kutsukake M, Ishihara R, Momose K, Isaka K, Itokazu O, Higuma C et al. Circulating IGF-binding protein 7 (IGFBP7) levels are elevated in patients with endometriosis or undergoing diabetic hemodialysis. Reprod Biol Endocrinol 2008; 6: 54.

    Article  Google Scholar 

  32. Akaogi K, Okabe Y, Funahashi K, Yoshitake Y, Nishikawa K, Yasumitsu H et al. Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochem Biophys Res Commun 1994; 198: 1046–1053.

    Article  CAS  Google Scholar 

  33. Sato J, Hasegawa S, Akaogi K, Yasumitsu H, Yamada S, Sugahara K et al. Identification of cell-binding site of angiomodulin (AGM/TAF/Mac25) that interacts with heparan sulfates on cell surface. J Cell Biochem 1999; 75: 187–195.

    Article  CAS  Google Scholar 

  34. Nagakubo D, Murai T, Tanaka T, Usui T, Matsumoto M, Sekiguchi K et al. A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule-associated molecules including chemokines. J Immunol 2003; 171: 553–561.

    Article  CAS  Google Scholar 

  35. Akaogi K, Sato J, Okabe Y, Sakamoto Y, Yasumitsu H, Miyazaki K . Synergistic growth stimulation of mouse fibroblasts by tumor-derived adhesion factor with insulin-like growth factors and insulin. Cell Growth Differ 1996; 7: 1671–1677.

    CAS  PubMed  Google Scholar 

  36. Gibson LF . Survival of B lineage leukemic cells: signals from the bone marrow microenvironment. Leuk Lymphoma 2002; 43: 19–27.

    Article  CAS  Google Scholar 

  37. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Driven MW, Heyenbrok MW et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990; 76: 2327–2336.

    CAS  PubMed  Google Scholar 

  38. Estrov Z, Meir R, Barak Y, Zaizov R, Zadik Z . Human growth hormone and insulin-like growth factor-1 enhance the proliferation of human leukemic blasts. J Clin Oncol 1991; 9: 394–399.

    Article  CAS  Google Scholar 

  39. Baier TG, Ludwig WD, Schönberg D, Hartmann KK . Characterisation of insulin-like growth factor I receptors of human acute lymphoblastic leukaemia (ALL) cell lines and primary ALL cells. Eur J Cancer 1992; 28A: 1105–1110.

    Article  CAS  Google Scholar 

  40. Baier TG, Jenne EW, Blum W, Schönberg D, Hartmann KK . Influence of antibodies against IGF-I, insulin or their receptors on proliferation of human acute lymphoblastic leukemia cell lines. Leuk Res 1992; 16: 807–814.

    Article  CAS  Google Scholar 

  41. Neely EK, Rosenfeld RG, Illescas A, Smith SD . Mitogenic effects of human recombinant insulin on B-cell precursor acute lymphoblastic leukemia cells. Leukemia 1992; 6: 1134–1142.

    CAS  PubMed  Google Scholar 

  42. Majumdar MK, Banks V, Peluso DP, Morris EA . Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 2000; 185: 98–106.

    Article  CAS  Google Scholar 

  43. López-Bermejo A, Khosravi J, Corless CL, Krishna RG, Diamandi A, Bodani U et al. Generation of anti-insulin-like growth factor-binding protein-related protein 1(IGFBP-rP1/MAC25) monoclonal antibodies and immunoassay: quantification of IGFBP-rP1 in human serum and distribution in human fluids and tissues. J Clin Endocrinol Metab 2003; 88: 3401–3408.

    Article  Google Scholar 

  44. Cheng SL, Zhang SF, Mohan S, Lecanda F, Fausto A, Hunt AH et al. Regulation of insulin-like growth factors I and II and their binding proteins in human bone marrow stromal cells by dexamethasone. J Cell Biochem 1998; 71: 449–458.

    Article  CAS  Google Scholar 

  45. Honczarenko M, Lê Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE . Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030–1041.

    Article  CAS  Google Scholar 

  46. Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y . Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 2008; 86: 1024–1035.

    Article  CAS  Google Scholar 

  47. Jiang W, Xiang C, Cazacu S, Brodie C, Mikkelsen T . Insulin-like growth factor binding protein 7 mediates glioma cell growth and migration. Neoplasia 2008; 10: 1335–1342.

    Article  CAS  Google Scholar 

  48. Georges RB, Adwan H, Hamdi H, Hielscher T, Linnemann U, Berger MR . The insulin-like growth factor binding proteins 3 and 7 are associated with colorectal cancer and liver metastasis. Cancer Biol Ther 2011; 12: 69–79.

    Article  CAS  Google Scholar 

  49. Hu S, Chen R, Man X, Feng X, Cen J, Gu W et al. Function and expression of insulin-like growth factor-binding protein 7 (IGFBP7) gene in childhood acute myeloid leukemia. Pediatr Hematol Oncol 2011; 28: 279–287.

    Article  CAS  Google Scholar 

  50. Heesch S, Schlee C, Neumann M, Stroux A, Kuhnl A, Schwartz S et al. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia. Leukemia 2010; 24: 1429–1436.

    Article  CAS  Google Scholar 

  51. Oh Y, Nagalla SR, Yamanaka Y, Kim HS, Wilson E, Rosenfeld RG . Synthesis and characterization of insulin-like growth factor binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and IGF-II. J Biol Chem 1996; 271: 30322–30325.

    Article  CAS  Google Scholar 

  52. Kim HS, Nagalla SR, Oh Y, Wilson E, Roberts Jr CT, Rosenfeld RG . Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Nat Acad Sci USA 1997; 94: 12981–12986.

    Article  CAS  Google Scholar 

  53. Pacher M, Seewald MJ, Mikula M, Ooehler S, Mogg M, Vinatzer U et al. Impact of constitutive IGF1/IGF2 stimulation on the transcriptional program of human breast cancer cells. Carcinogenesis 2007; 28: 49–59.

    Article  CAS  Google Scholar 

  54. Tu W, Cheung PT, Lau YL . Insulin-like growth factor 1 promotes cord blood T cell maturation and inhibits its spontaneous and phytohemagglutinin-induced apoptosis through different mechanisms. J Immunol 2000; 165: 1331–1336.

    Article  CAS  Google Scholar 

  55. Ogawa M, Nishiura T, Oritani K, Yoshida H, Yoshimura M, Okajima Y et al. Cytokines prevent dexamethasone- induced apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in a new multiple myeloma cell line. Cancer Res 2000; 60: 4262–4269.

    CAS  PubMed  Google Scholar 

  56. Leverrier Y, Thomas J, Mathieu AL, Low W, Blanquier B, Marvel J . Role of PI3-kinase in Bcl-X induction and apoptosis inhibition mediated by IL-3 or IGF-1 in Baf-3 cells. Cell Death Differ 1999; 6: 290–296.

    Article  CAS  Google Scholar 

  57. Scrideli CA, Assumpção JG, Ganazza MA, Araújo M, Toledo SR, Lee ML et al. A simplified minimal residual disease polymerase chain reaction method at early treatment points can stratify children with acute lymphoblastic leukemia into good and poor outcome groups. Haematologica 2009; 94: 781–789.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FAPESP 08/10034-1 and CNPq 401122/05 to JAY and FAPESP 05/50731-5 to LGT. ABAL was supported by FAPESP 08/02106-2 and JFV was supported by FAPESP 06/01158-3. We especially acknowledge the contribution of patients and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Yunes.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laranjeira, A., de Vasconcellos, J., Sodek, L. et al. IGFBP7 participates in the reciprocal interaction between acute lymphoblastic leukemia and BM stromal cells and in leukemia resistance to asparaginase. Leukemia 26, 1001–1011 (2012). https://doi.org/10.1038/leu.2011.289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.289

Keywords

This article is cited by

Search

Quick links