Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein

Abstract

ESCHERICHIA COLI divides by forming a septum across the middle of the cell. The biochemical mechanism underlying this process is unknown. Genetic evidence suggests that of all the fts (filamentation temperature sensitive) genes1,2 involved in E. coli cell division, ftsZ plays a central role at the earliest known step of septation3–5. Here we show that FtsZ protein binds GTP in vitro using unusual sequence elements6–8. In contrast, such binding to the product of the conditional-lethal ftsZ84 allele is impaired. Purified FtsZ displays a Mg2+-dependent GTPase activity which is markedly reduced in the FtsZ84 protein. FtsZ copurifies with near stoichiometric amounts of noncovalently-bound GDP, implying the presence of a GTPase cycle in vivo, similar to that known for signal-transducing GTP-binding proteins8,9. We also show that a small fraction of FtsZ exists as a distinct membrane-associated species that binds GTP. The membrane association of FtsZ and the known ability of GTPases to act as molecular switches8,9 implicate FtsZ in a GTP-activated signal transduction pathway that may regulate the start of septation in E. coli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Donachie, W. D., Begg, K. J. & Sullivan, N. F. in Microbial Development (ed. Losick, R. & Shapiro, L.) 27–62 (Cold Spring Harbor Laboratory, New York, 1984).

    Google Scholar 

  2. de Boer, P. A. J., Cook, W. R., & Rothfield, L. I. A. Rev. Genet. 24, 249–274 (1990).

    Article  CAS  Google Scholar 

  3. Lutkenhaus, J. Trends Genet. 6, 22–25 (1990).

    Article  CAS  Google Scholar 

  4. Begg, K. J. & Donachie, W. D. J. Bact. 163, 615–622 (1985).

    CAS  PubMed  Google Scholar 

  5. Taschner, P. E. M., Huls, P. G., Pas, E. & Woldringh, C. L. J. Bact. 170, 1533–1540 (1988).

    Article  CAS  Google Scholar 

  6. Yi, Q.-M. & Lutkenhaus, J. Gene 36, 241–247 (1985).

    Article  CAS  Google Scholar 

  7. Bi, E. & Lutkenhaus, J. J. Bact. 172, 5602–5609 (1990).

    Article  CAS  Google Scholar 

  8. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  10. McGrath, J. P., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Nature 310, 644–649 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Lapetina, E. G. & Reep, B. R. Proc. natn. Acad. Sci. U.S.A. 84, 2261–2265 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Connolly, T. & Gilmore, R. Cell 57, 599–610 (1989).

    Article  CAS  Google Scholar 

  13. Farnsworth, C. L., Marshall, M. S., Gibbs, J. B., Stacey, D. W. & Feig, L. A. Cell 64, 625–633 (1991).

    Article  CAS  Google Scholar 

  14. Goud, B., Salminen, A., Walworth, N. C. & Novick, P. J. Cell 53, 753–768 (1988).

    Article  CAS  Google Scholar 

  15. Schmitt, H. D., Wagner, P., Pfaff, E. & Gallwitz, D. Cell 47, 401–412 (1986).

    Article  CAS  Google Scholar 

  16. Hall, A. & Self, A. J. J. biol. Chem. 261, 10963–10965 (1986).

    CAS  PubMed  Google Scholar 

  17. Hershey, J. W. B. in Escherichia coli & Salmonella typhimurium Cellular & Molecular Biology (eds Neidhardt, F. C. et al. 613–647 (American Society for Microbiology, Washington DC, 1987).

    Google Scholar 

  18. Temeles, G. L., Gibbs, J. B., D'Alonzo, J. S., Sigal, I. S. & Scolnick, E. M. Nature 313, 700–703 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Poe, M., Scolnick, E. M. & Stein, R. B. J. biol. Chem. 260, 3906–3909 (1985).

    CAS  PubMed  Google Scholar 

  20. Krauhs, E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4156–4160 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Oakley, C. E. & Oakley, B. R. Nature 338, 662–664 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Corton, J. C., Ward, J. E. Jr & Lutkenhaus, J. J. Bact. 169, 1–7 (1987).

    Article  CAS  Google Scholar 

  23. Beall, B., Lowe, M. & Lutkenhaus, J. J. Bact. 170, 4855–4864 (1988).

    Article  CAS  Google Scholar 

  24. Margolin, W., Corbo, J. C. & Long, S. R. J. Bact. 173, 5822–5830 (1991).

    Article  CAS  Google Scholar 

  25. Bender, A. & Pringle, J. R. Proc. natn. Acad. Sci. U.S.A. 86, 9976–9980 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Chant, J. & Herskowitz, I. Cell 65, 1203–1212 (1991).

    Article  CAS  Google Scholar 

  27. Johnson, D. & Pringle, J. R. J. cell Biol. 111, 143–152 (1990).

    Article  CAS  Google Scholar 

  28. Chant, J., Corrado, K., Pringle, J. R. & Herskowitz, I. Cell 65, 1213–1224 (1991).

    Article  CAS  Google Scholar 

  29. Kim, H. B., Haarer, B. K. & Pringle, J. R. J. cell Biol. 112, 535–544 (1991).

    Article  CAS  Google Scholar 

  30. Bi, E. & Lutkenhaus, J. Nature 354, 161–164 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Janmey, P. A. et al. Nature 347, 95–99 (1990).

    Article  ADS  CAS  Google Scholar 

  32. McEntee, K., WeinstocK, G. M. & Lehman, I. R. J. biol. Chem. 256, 8835–8844 (1981).

    CAS  PubMed  Google Scholar 

  33. Snyder, J. A. & Mclntosh, J. R. A. Rev. Biochem. 45, 699–720 (1976).

    Article  CAS  Google Scholar 

  34. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Meth. Enzym. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  35. Saiki, R. K. et al. Science 239, 487–491 (1988).

    Article  ADS  CAS  Google Scholar 

  36. Ito, K., Sato, T. & Yura, T. Cell 11, 551–559 (1977).

    Article  CAS  Google Scholar 

  37. Rosen, B. P., Weigel, U., Karkaria, C. & Gangola, P. J. biol. Chem. 263, 3067–3070 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RayChaudhuri, D., Park, J. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992). https://doi.org/10.1038/359251a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359251a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing