Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subtractive and divisive adaptation in the human visual system

Abstract

SENSORY systems can adapt to the conditions imposed on them1. In the visual system, adapting to a pattern increases the threshold of the ability to see that pattern, and reduces the perceived contrast of the pattern above threshold2–4. Most neurons of the striate cortex reduce their responsiveness after being stimulated for some time by a high-contrast pattern5–7. Such an effect may lie behind these psychophysical adaptation phenomena2–4. These adaptation effects have been reported to be confined to patterns of similar orientation, which is understandable in that the visual neurons that adapt are only excited by a small range of orientations8. Neurophysiological evidence suggests that neurons with different orientation preferences have inhibitory interconnections9–13. It is therefore of interest to explore the possible effects of these connections on perception. Here we show that adapting to a horizontal pattern can reduce the perceived contrast of a vertical test pattern more than a horizontal test pattern. These 'cross-orientation' effects are modelled by a division-like process, whereas the more normal 'similar-orientation' effects are modelled by a subtractive process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mollon, J. D. New Scient 61, 479–482 (1974).

    Google Scholar 

  2. Gilinsky, A. S. J. opt. Soc. Am. 58, 13–17 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Blakemore, C. & Nachmias, J. J. Physiol., Lond. 213, 157–174 (1971).

    Article  CAS  Google Scholar 

  4. Blakemore, C., Muncey, J. P. J. & Ridley, R. M. Vision Res. 13, 1915–1931 (1973).

    Article  CAS  Google Scholar 

  5. Maffei, L. Fiorentini, A. & Bisti, S. Science 182, 1036–1038 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Movshon, J. A. & Lennie, P. Nature 278, 850–852 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Ohzawa, I., Sclar, G. & Freeman, R. D. Nature 298, 266–268 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Hubel, D. & Weisel, T. J. Physiol. Lond. 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  9. Beneveto, L. A., Creutzfelt, O. D. & Kuhnt, U. Nature 238, 124–126 (1972).

    Article  Google Scholar 

  10. Sillito, A. M. Trends Neurosci. 2, 196–198 (1979).

    Article  Google Scholar 

  11. Morrone, M. C., Burr, D. C. & Maffei, L. Proc. R. Soc. B216, 335–354 (1982).

    ADS  CAS  Google Scholar 

  12. Ramoa, A. S., Shadlen, M., Skottun, B. C. & Freeman, R. D. Nature 321, 237–239 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Bonds, A. B. Vis. Neurosci. 2, 41–55 (1989).

    Article  CAS  Google Scholar 

  14. Georgeson, M. A. Spat. Vision 1, 103–112 (1985).

    Article  CAS  Google Scholar 

  15. Dealy, R. S. & Tolhurst, D. J. J. Physiol., Lond. 241, 261–270 (1974).

    Article  CAS  Google Scholar 

  16. Albrecht, D. G. & Hamilton, D. B. J. Neurophys. 48, 217–237 (1982).

    Article  CAS  Google Scholar 

  17. Tolhurst, D. J., Movshon, J. A. & Thompson, I. D. Expl Brain Res. 41, 414–419 (1981).

    CAS  Google Scholar 

  18. Gibson, J. J. & Radner, M. J. exp. Psychol. 20, 453–467 (1937).

    Article  Google Scholar 

  19. Heeley, D. W. Vision Res. 29, 1229–1236 (1979).

    Article  Google Scholar 

  20. Blakemore, C. B. & Sutton, P. Science 166, 245–247 (1971).

    Article  ADS  Google Scholar 

  21. Greenlee, M. W. & Magnussen, S. Vision Res. 28, 1303–1310 (1988).

    Article  CAS  Google Scholar 

  22. Morrone, M. C. & Burr, D. C. Nature 321, 235–237 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Snowden, R. J., Treue, S., Erickson, R. E. & Andersen, R. A. J. Neurosci. 11, 2768–2785 (1991).

    Article  CAS  Google Scholar 

  24. Dean, A. F., Hess, R. F. & Tolhurst, D. J. J. Physiol., Lond. 308, 84 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snowden, R., Hammett, S. Subtractive and divisive adaptation in the human visual system. Nature 355, 248–250 (1992). https://doi.org/10.1038/355248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355248a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing