Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface-promoted replication and exponential amplification of DNA analogues

Abstract

Self-replicating chemical systems have been designed and studied to identify the minimal requirements for molecular replication1, to translate the principle into synthetic supramolecular systems2 and to derive a better understanding of the scope and limitations of self-organization processes3 that are believed to be relevant to the origin of life on Earth4. Current implementations make useofoligonucleotide analogues5,6,7,8,9,10,11,12, peptides13,14,15,16,17, and other molecules18,19,20,21,22,23,24 as templates and are based either on autocatalytic, cross-catalytic, or collectively catalytic pathways for template formation. A common problem of these systems is product inhibion, leading to parabolic instead of exponential amplification25. The latter is the dynamic prerequisite for selection in the darwinian sense26,27. We here describe an iterative, stepwise procedure for chemical replication which permits an exponential increase in the concentration of oligonucleotide analogues. The procedure employs the surface of a solid support and is called SPREAD (surface-promoted replication and exponential amplification of DNA analogues). Copies are synthesized from precursor fragments by chemical ligation on immobilized templates, and then liberated and immobilized to become new templates. The process is repeated iteratively. The role of the support is to separate complementary templates which would form stable duplexes in solution. SPREAD combines the advantages of solid-phase chemistry with chemical replication, and can be further developed for the non-enzymatic and enzymatic amplification of RNA, peptides and other templates as well as for studies of in vitro evolution and competition in artificial chemical systems. Similar processes may also have played a role in the origin of life on Earth, because the earliest replication systems may have proliferated by spreading on mineral surfaces28,29,30,31,32,33.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General scheme of the SPREAD procedure.
Figure 2: Oligonucleotide analogues and reactions employed in the experiment.
Figure 3: HPLC analysis of products under denaturing conditions obtained in the consecutive steps of a SPREAD cycle.
Figure 4: Pathway of template transfers in the course of three cycles of SPREAD amplification.

Similar content being viewed by others

References

  1. Sievers, D. et al. Self-Reproduction of Supramolecular Structures—From Synthetic Structures to Models of Minimal Living Systems 45–64 (Kluwer, Dordrecht, 1994).

    Google Scholar 

  2. Wintner, E. A., Conn, M. M. & Rebek, J. Studies in molecular replication. Acc. Chem. Res. 27, 198–203 (1994).

    Article  CAS  Google Scholar 

  3. Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Orgel, L. E. Unnatural selection in chemical systems. Acc. Chem. Res. 28, 109–118 (1995).

    Article  CAS  Google Scholar 

  5. von Kiedrowski, G. Aself-replicating hexadeoxynucleotide. Angew. Chem. Int. Edn Engl. 25, 932–935 (1986).

    Article  Google Scholar 

  6. Zielinski, W. S. & Orgel, L. E. Autocatalytic synthesis of a tetranucleotide analogue. Nature 327, 346–347 (1987).

    Article  ADS  CAS  Google Scholar 

  7. von Kiedrowski, G., Wlotzka, B., Helbing, J., Matzen, M. & Jordan, S. Parabolic growth of a hexadeoxynucleotide analogue bearing a 3′-5′-phosphoamidate link. Angew. Chem. Int. Edn Engl. 30, 423–426, 892 (1991).

    Article  Google Scholar 

  8. Achilles, T. & von Kiedrowski, G. Aself-replicating system from three precursors. Angew. Chem. Int. Edn Engl. 32, 1198–1201 (1993).

    Article  Google Scholar 

  9. Sievers, D. & von Kiedrowski, G. Self-replication of complementary nucleotide-based oligomers. Nature 369, 221–224 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Li, T. & Nicolaou, K. C. Chemical self-replication of palindromic duplex DNA. Nature 369, 218–221 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Martin, B., Micura, R., Pitsch, S. & Eschenmoser, A. Pyranosyl-RNA: further observations on replication. Helv. Chim. Acta 80, 1901–1951 (1997).

    Article  Google Scholar 

  12. Sievers, D. & von Kiedrowski, G. Self-replication of hexadeoxynucleotide analogues: autocatalysis versus cross-catalysis. Chem. Eur. J. 4, 629–641 (1998).

    Article  CAS  Google Scholar 

  13. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. Aself-replicating peptide. Nature 382, 525–528 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Severin, K., Lee, D. H., Martinez, J. A., Vieth, M. & Ghadiri, M. R. Dynamic error correction in autocatalytic peptide networks. Angew. Chem. Int. Edn Engl. 37, 126–128 (1998).

    Article  CAS  Google Scholar 

  15. Lee, D. H., Severin, K., Yokobayashi, Y. & Ghadiri, M. R. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390, 591–594 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Yao, S., Ghosh, I., Zutshi, R. & Chmielewski, J. Aself-replicating peptide under ionic control. Angew. Chem. Int. Edn Engl. 37, 478–481 (1998).

    Article  CAS  Google Scholar 

  17. Severin, K. S., Lee, D. H., Martinez, J. A. & Ghadiri, M. R. Peptide self-replication via template-directed ligation. Chem. Eur. J. 3, 1017–1024 (1997).

    Article  CAS  Google Scholar 

  18. Tjivikua, T., Ballester, P. & Rebek, J. Aself-replicating system. J. Am. Chem. Soc. 112, 1249–1250 (1990).

    Article  CAS  Google Scholar 

  19. Terfort, A. & von Kiedrowski, G. Self-replication during condensation of 3-aminobenzamidines with 2-formylphenoxyacetic acids. Angew. Chem. Int. Edn Engl. 31, 654–656 (1992).

    Article  Google Scholar 

  20. Hong, J.-I., Feng, Q., Rotello, V. & Rebek, J. Competition, cooperation, and mutation: improving a synthetic replicator by light irradiation. Science 255, 848–850 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Feng, Q., Park, T. K. & Rebek, J. Crossover reactions between synthetic replicators yield active and inactive recombinants. Science 256, 1179–1180 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Pieters, R. J., Huc, I. & Rebek, J. Reciprocal template effect in a replication cycle. Angew. Chem. Int. Edn Engl. 106, 1579–1581 (1994).

    Article  Google Scholar 

  23. Reinhoudt, D. N., Rudkevich, D. M. & de Jong, F. Kinetic analysis of the Rebek self-replicating system: is there a controversy? J. Am. Chem. Soc. 118, 6880–6889 (1996).

    Article  CAS  Google Scholar 

  24. Wang, B. & Sutherland, I. O. Self-replication in a Diels-Alder reaction. Chem. Commun. 16, 1495–1496 (1997).

    Article  Google Scholar 

  25. von Kiedrowski, G. Minimal replicator theory I: parabolic versus exponential growth. Bioorg. Chem. Front. 3, 113–146 (1993).

    Article  CAS  Google Scholar 

  26. Szathmáry, E. & Gladkih, I. Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138, 55–58 (1989).

    Article  Google Scholar 

  27. Wills, R. W., Kauffman, S. A., Stadler, B. M. R. & Stadler, P. F. Selection Dynamics in Autocatalytic System: Templates Replicating Through Binary Ligation (Working Paper 97-07-065, Santa Fe Institute, 1997); also as Bull. Math. Biol. (in the press).

    MATH  Google Scholar 

  28. Bernal, J. D. The Physical Base of Life (Routledge & Kegan Paul, London, 1951).

    Google Scholar 

  29. Cairns-Smith, A. G. The Life Puzzle (Oliver & Boyd, Edinburgh, 1971).

    Book  Google Scholar 

  30. Kuhn, H., Waser, J. Molecular self-organization and the origin of life. Angew. Chem. Int. Edn Engl. 20, 500–520 (1981).

    Article  Google Scholar 

  31. Wächtershäuser, G. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484 (1988).

    PubMed  PubMed Central  Google Scholar 

  32. Szathmary, E. & Smith, J. M. From replicators to reproducers: The first major transitions leading to life. J. Theor. Biol. 187, 555–571 (1997).

    Article  CAS  Google Scholar 

  33. Orgel, L. E. Polymerization on the rocks: Theoretical introduction. Origins Life Evol. Biosphere 28, 227–234 (1998).

    Article  ADS  CAS  Google Scholar 

  34. Ferris, J. P., Hill, A. R., Liu, R. & Orgel, L. E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61 (1996).

    Article  ADS  CAS  Google Scholar 

  35. von Kiedrowski, G. Primordial soup or crêpes? Nature 381, 20–21 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Lorsch, J. R. & Szostak, W. J. In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371, 31–36 (1994).

    Article  ADS  CAS  Google Scholar 

  37. Dolinnaya, N. G., Tsytovish, A. V., Sergeev, V. N., Oretskaya, T. S. & Shabarova, Z. A. Structural and kinetic aspects of chemical reactions in DNA duplexes. Information on DNA local structure obtained from chemical ligation data. Nucleic Acids Res. 19, 3073–3080 (1991).

    Article  CAS  Google Scholar 

  38. James, K. D. & Ellington, A. D. Surprising fidelity of template-directed chemical ligation of oligonucleotides. Chem. Biol. 4, 595–605 (1997).

    Article  CAS  Google Scholar 

  39. Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A. & Furste, J. P. Mirror-image RNA that binds D-adenosine. Nature Biotechnol. 14, 1112–1115 (1996).

    Article  CAS  Google Scholar 

  40. Joyce, G. F. Origins of Life: The Central Conceptsforeword (Jones and Bartlett, Boston, 1994).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (SFB 452), Fonds der Chemischen Industrie, German Israeli Foundation (GIF) and Bundesministerium für Bildung und Forschung (BMBF). We thank B. Materne and M. Wüstefeld for technical assistance, B. Kind for mathematical advice, and K. Johnsson and M. Zielinski for comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. von Kiedrowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, A., Brandsch, R. & von Kiedrowski, G. Surface-promoted replication and exponential amplification of DNA analogues. Nature 396, 245–248 (1998). https://doi.org/10.1038/24343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24343

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing