Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations

Abstract

When monkeys perform a delayed match-to-sample task, some neurons in the anterior inferotemporal cortex show sustained activity following the presentation of specific visual stimuli, typically only those that are shown repeatedly. When sample stimuli are shown in a fixed temporal order, the few images that evoke delay activity in a given neuron are often neighboring stimuli in the sequence, suggesting that this delay activity may be the neural correlate of associative long-term memory. Here we report that stimulus-selective sustained activity is also evident following the presentation of the test stimulus in the same task. We use a neural network model to demonstrate that persistent stimulus-selective activity across the intertrial interval can lead to similar mnemonic representations (distributions of delay activity across the neural population) for neighboring visual stimuli. Thus, inferotemporal cortex may contain neural machinery for generating long-term stimulus–stimulus associations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental task, visual stimuli and cortical area explored in this study.
Figure 2: Stimulus-selective sustained activity in the ITI.
Figure 3: Sustained activity measures across a population of IT neurons.
Figure 4: Clustering of delay activity to neighboring stimuli in a fixed sequence.
Figure 5: Three snapshots of the behavior of the modeled network corresponding to the three stages of the development of associative memory.

Similar content being viewed by others

References

  1. Miyashita, Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817–820 ( 1988).

    Article  CAS  Google Scholar 

  2. Fuster, J. M. & Jervey, J. P. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955 ( 1981).

    Article  CAS  Google Scholar 

  3. Sakai, K. & Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991).

    Article  CAS  Google Scholar 

  4. Nakamura, K. & Kubota, K. Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. J. Neurophysiol. 74, 162–178 (1995).

    Article  CAS  Google Scholar 

  5. Wilson, F. A., Scalaidhe, S. P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    Article  CAS  Google Scholar 

  6. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 ( 1997).

    Article  CAS  Google Scholar 

  7. Amit, D. J., Brunel, N. & Tsodyks, M. V. Correlations of cortical hebbian reverberations: Theory versus experiment. J. Neurosci. 14, 6435 –6445 (1994).

    Article  CAS  Google Scholar 

  8. Amit, D. J. The Hebbian paradigm reintegrated: Local reverberations as internal representations. Behav. Brain Sci. 18, 617–657 (1995).

    Article  Google Scholar 

  9. Amit, D. J., Fusi, S. & Yakovlev, V. Paradigmatic working memory (attractor) cell in IT cortex. Neural Comput. 9, 1071–1093 ( 1997).

    Article  CAS  Google Scholar 

  10. Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460– 1478 (1993).

    Article  CAS  Google Scholar 

  11. Brunel, N. Hebbian learning of context in recurrent neural networks. Neural Comput. 8, 1677–1710 (1996).

    Article  CAS  Google Scholar 

  12. Amit, D. J. & Brunel, N. Global spontaneous activity and local structured (learned) delay activity in cortex. Cereb. Cortex 7, 237–252 (1997).

    Article  CAS  Google Scholar 

  13. Griniasti, M., Tsodyks, M. V. & Amit, D. J. Conversion of temporal correlations between stimuli to spatial correlations between attractors. Neural Comput. 5, 1–9 (1993).

    Article  Google Scholar 

  14. Scalaidhe, S. P. O., Wilson, F. A. & Goldman-Rakic, P. S. Areal segregation of face-processing neurons in prefrontal cortex. Science 278, 1135– 1138 (1997).

    Article  CAS  Google Scholar 

  15. Fuster, J. M. Inferotemporal units in selective visual attention and short-term memory. J. Neurophysiol. 64, 681–697 ( 1990).

    Article  CAS  Google Scholar 

  16. Miller, E. K., Erickson, C. & Desimone, R. Neural mechanisms of working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  Google Scholar 

  17. Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus-stimulus association in rhesus monkeys . J. Neurosci. 13, 4549– 4561 (1993).

    Article  CAS  Google Scholar 

  18. Gutnikov, S. A., Yuan-Ye, M. & Gaffan, D. Temporo-frontal disconnection impairs visual-visual paired association learning but not configural learning in macaca monkeys . Eur. J. Neurosci. 9, 1524– 1529 (1997).

    Article  CAS  Google Scholar 

  19. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–140 (1996).

    Article  CAS  Google Scholar 

  20. Wallis, G. & Rolls, E. T. Invariant face and object recognition in the visual system. Prog. Neurobiol. 51, 167–194 (1997).

    Article  CAS  Google Scholar 

  21. Bartlett, M. & Sejnowski, T. Learning viewpoint invariant representations from visual experience using attractor networks. Network (in press).

  22. DeRenzi, E., Faglioni, P. & Villa, P. Topographical amnesia. J. Neurol. Neurosurg. Psychiatry 40, 498–505 (1977).

    Article  CAS  Google Scholar 

  23. Whiteley, A. M. & Warrington, E. K. Selective impairment of topographical memory: a single case study. J. Neurol. Neurosurg. Psychiatry 41, 575–578 (1978).

    Article  CAS  Google Scholar 

  24. Landis, T. Cummings, J. L. Benson, D. F. & Palmer, E. P. Loss of topographic familiarity. Arch. Neurol. 43, 132– 136 (1986).

    Article  CAS  Google Scholar 

  25. Maguire, E. A., Burke, T. Philips, J. & Staunton, H. Topographical disorientation following unilateral temporal lobe lesions in humans. Neuropsychologia 34, 994–1004 (1996).

    Article  Google Scholar 

  26. Petersen, C. C. H., Malenka, R. C., Nicoll, R. A. & Hopfield, J. J. All-or-none potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci. USA 95, 4732–4737 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gadi Goelman for technical support in the MRI testing, Michail Dvorkin for development of some of the data analysis tools and Nicolas Brunel for help in reproducing his simulations. Robert Shapley pointed out the possible relevance of the connection between prosopagnosia and navigation problems in patients with temporal-lobe lesions. Daniel Amit and Shaul Hochstein commented on earlier versions of the manuscript. This work was supported by grants from the Israel Academy of Science and Israel National Institute of Psychobiology (V.Y.) and a McDonnel-Pew grant for cognitive neuroscience (E.Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Zohary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, V., Fusi, S., Berman, E. et al. Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations. Nat Neurosci 1, 310–317 (1998). https://doi.org/10.1038/1131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing