Skip to main content
Log in

Role of Astrocytes in the Maintenance and Modulation of Glutamatergic and GABAergic Neurotransmission

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The functional activity in the brain is primarily composed of an interplay between excitation and inhibition. In any given region the output is based upon a complex processing of incoming signals that require both excitatory and inhibitory units. Moreover, these units must be regulated and balanced such that an integrated and finely tuned response is generated. In each of these units or synapses the activity depends on biosynthesis, release, receptor interaction, and inactivation of the neurotransmitter in question; thus, it is easily understood that each of these processes needs to be highly regulated and controlled. It is interesting to note that in case of the most prevailing neurotransmitters, glutamate and GABA, which mediate excitation and inhibition, respectively, the inactivation process is primarily maintained by highly efficient, high-affinity transport systems capable of maintaining transmembrane concentration gradients of these amino acids of 104–105-fold. The demonstration of the presence of transporters for glutamate and GABA in both neuronal and astrocytic elements naturally raises the question of the functional importance of the astrocytes in the regulation of the level of the neurotransmitters in the synaptic cleft and hence for the activity of excitatory and inhibitory neurotransmission. Obviously, this discussion has important implications for the understanding of the role of astrocytes in disease states in which imbalances between excitation and inhibition are a triggering factor, for example, epilepsy and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Logan, W. J. and Snyder, S. H. 1972. High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 42:413–431.

    PubMed  Google Scholar 

  2. Henn, F. A. and Hamberger, A. 1971. Glial cell function: uptake of transmitter substances. Proc. Natl. Acad. Sci. USA 68:2686–2690.

    PubMed  Google Scholar 

  3. Henn, F. A., Goldstein, M. N., and Hamberger, A. 1974. Uptake of the neurotransmitter candidate glutamate by glia. Nature 249:663–664.

    PubMed  Google Scholar 

  4. Schousboe, A., Hertz, L., and Svenneby, G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2:217–229.

    Google Scholar 

  5. Schousboe, A., Svenneby, G., and Hertz, L. 1977. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29:999–1005.

    PubMed  Google Scholar 

  6. Hertz, L., Schousboe, A., Boechler, N., Mukerji, S., and Fedoroff, S. 1978. Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem. Res. 3:1–14.

    Google Scholar 

  7. Danbolt, N. C. 1994. The high-affinity uptake system for excitataory amino acids in the brain. Prog. Neurobiol. 44:377–396.

    PubMed  Google Scholar 

  8. Danbolt, N. C. 2001. Glutamate uptake. Progr. Neurobiol. 65:1–105.

    PubMed  Google Scholar 

  9. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., Davidson, N., Lester, H. A., and Kanner, B. I. 1990. Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306.

    PubMed  Google Scholar 

  10. Blakely, R. D., Berson, H. E., Fremeau, R. T., Caron, M. G., Peek, M. M., Prince, H. K., and Bradley, C. C. 1991. Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70.

    PubMed  Google Scholar 

  11. Kilty, J., Lorang, D., and Amara, S. G. 1991. Cloning and expression of a cocaine-sensitive dopamine transporter. Science 254:578–579.

    PubMed  Google Scholar 

  12. Storck, T., Schulte, S., Hofmann, K., and Stoffel, W. 1992. Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 89:10955–10959.

    PubMed  Google Scholar 

  13. Pines, G., Danbolt, N. C., Bjorås, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., and Kanner, B. I. 1992. Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467.

    PubMed  Google Scholar 

  14. Kanai, Y. and Hediger, M. A. 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471.

    PubMed  Google Scholar 

  15. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P., and Amara, S. G. 1995. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603.

    PubMed  Google Scholar 

  16. Arriza, J. L., Eliasof, S., Kavanaugh, M. P., and Amara, S. G. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94:4155–4160.

    PubMed  Google Scholar 

  17. Gegelashvili, G. and Schousboe, A. 1998. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res. Bull. 45:233–238.

    PubMed  Google Scholar 

  18. Lehre, K. P., Levy, L. M., Ottersen, O. P., Storm-Mathisen, J., and Danbolt, N. C. 1995. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15:1835–1853.

    PubMed  Google Scholar 

  19. Lehre, K. P. and Danbolt, N. C. 1998. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18:8751–8757.

    PubMed  Google Scholar 

  20. Levy, L. M. 2002. Structure, function and regulation of glutamate transporters. Pages 307–336, in Egebjerg, J., Schousboe, A., and Krogsgaard-Larsen, P. (eds.), Glutamate and GABA Receptors and Transporters. Structure, Function and Pharmacology, Taylor and Francis, London.

    Google Scholar 

  21. Northington, F. J., Traystman, R. J., Koehler, R. C., and Martin, L. J. 1999. GLT1, glial glutamate transporter, is transiently expressed in neurons and develops astrocyte specificity only after midgestation in the bovine fetal brain. J. Neurobiol. 39:515–526.

    PubMed  Google Scholar 

  22. Plachez, C., Danbolt, N. C., and Recasens, M. 2000. Transient expression of the glial glutamate transporters GLAST and GLT in hippocampal neurons in primary culture. J. Neurosci. Res. 59:587–593.

    PubMed  Google Scholar 

  23. Rothstein, J. D., Martin, L., Levey, A. I., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N., and Kuncl, R. W. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13:713–725.

    PubMed  Google Scholar 

  24. Hertz, L. 1979. Functional interactions between neurons and astrocytes: I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13:277–323.

    PubMed  Google Scholar 

  25. Schousboe, A. 1981. Transport and metabolism of glutamate and GABA in neurons and glial cells. Int. Rev. Neurobiol. 22:1–45.

    PubMed  Google Scholar 

  26. Yamada, K., Watanabe, M., Shibata, T., Tanaka, K., Wada, K., and Inoue, Y. 1996. EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7:2013–2017.

    PubMed  Google Scholar 

  27. Dehnes, Y., Chaudhry, F. A., Ullensvang, K., Lehre, K. P., Storm-Mathisen, J., and Danbolt, N. C. 1998. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J. Neurosci. 18:3606–3619.

    PubMed  Google Scholar 

  28. Rauen, T., Fischer, F., and Wiessner, M. 1999. Glia-neuron interaction by high-affinity glutamate transporters in neurotransmission. Adv. Exp. Med. Biol. 468:81–95.

    PubMed  Google Scholar 

  29. Tong, G. and Jahr, C. E. 1994. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203.

    PubMed  Google Scholar 

  30. Wadiche, J. I., Arriza, J. L., Amara, S. G., and Kavanaugh, M. P. 1995. Kinetics of a human glutamate transporter. Neuron 14:1019–1027.

    PubMed  Google Scholar 

  31. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    PubMed  Google Scholar 

  32. Hagberg, H., Lehmann, A., Sandberg, M., Nyström, B., Jacobsen, I., and Hamberger, A. 1985. Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments. J. Cereb. Blood Flow Metab. 5:413–419.

    PubMed  Google Scholar 

  33. Sandberg, M., Butcher, S. P., and Hagberg, H. 1986. Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of rat hippocampus. J. Neurochem. 47:178–184.

    PubMed  Google Scholar 

  34. Gegelashvili, G. and Schousboe, A. 1997. High-affinity glutamate transporters: regulation of expression and activity. Mol. Pharmacol. 52:6–15.

    PubMed  Google Scholar 

  35. Gegelashvili, G., Robinson, M. B., Trotti, D., and Rauen, T. 2001. Regulation of glutamate transporters in health and disease. Prog. Brain Res. 132:267–286.

    PubMed  Google Scholar 

  36. Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J., and Kuncl, R. W. 1995. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38:73–84.

    PubMed  Google Scholar 

  37. Choi, D. W. and Rothman, S. M. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171–182.

    PubMed  Google Scholar 

  38. Schousboe, A. and Frandsen, A. 1995. Glutamate receptors and neurotoxicity. Pages 239–251, in Stone, T. W. (ed.), CNS Neurotransmitters and Neuromodulators: Glutamate, CRC Press, Boca Raton, FL.

    Google Scholar 

  39. Wang, G. J., Chung, H. J., Schnuer, J., Pratt, K., Zable, A. C., Kavanaugh, M. P., and Rosenberg, P. A. 1998. High affinity glutamate transport in rat cortical neurons in culture. Mol. Pharmacol. 53:88–96.

    PubMed  Google Scholar 

  40. Chen, W., Aoki, C., Mahadomrongkul, V., Gruber, C. E., Wang, G. J., Blitzblau, R., Irwin, N., and Rosenberg, P. A. 2002. Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J. Neurosci. 22:2142–2152.

    PubMed  Google Scholar 

  41. Drejer, J., Meier, E., and Schousboe, A. 1983. Novel neuron-related regulatory mechanisms for astrocytic glutamate and GABA high affinity uptake. Neurosci. Lett. 37:301–306.

    PubMed  Google Scholar 

  42. Gegelashvili, G., Danbolt, N. C., and Schousboe, A. 1997. Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J. Neurochem. 69:2612–2615.

    PubMed  Google Scholar 

  43. Swanson, R. A., Liu, J., Miller, J. W., Rothstein, J. D., Farrel, K., Stein, B. A., and Longuemare, M. C. 1997. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J. Neurosci. 17:932–940.

    PubMed  Google Scholar 

  44. Schlag, B. D., Vondrasek, J. R., Munir, M., Kalandadze, A., Zelenaia, O. A., Rothstein, J. D., and Robinson, M. B. 1998. Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol. Pharmacol. 53:355–369.

    PubMed  Google Scholar 

  45. Gegelashvili, G., Civenni, G., Racagni, G., Danbolt, N. C., Schousboe, I., and Schousboe, A. 1996. Glutamate receptor agonists up-regulate glutamate transporter glast in astrocytes. Neuroreport 8:261–265.

    PubMed  Google Scholar 

  46. Gegelashvili, G., Dehnes, Y., Danbolt, N. C., and Schousboe, A. 2000. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem. Int. 37:163–170.

    PubMed  Google Scholar 

  47. Dowd, L. A. and Robinson, M. B. 1996. Rapid stimulation of EAAC1–mediated Na+-dependent L-glutamate transport activity in C6 glioma cells by phorbol ester. J. Neurochem. 67:508–516.

    PubMed  Google Scholar 

  48. Gonsalez, M. I. and Ortega, A. 1997. Regulation of the Na+-dependent high affinity glutamate/aspartate transporter in cultured Bergmann glia by phorbol esters. J. Neurosci. Res. 50:585–590.

    PubMed  Google Scholar 

  49. Gonsalez, M. I., Lopez-Colome, A. M., and Ortega, A. 1999. Sodium-dependent glutamate transport in Müller glial cells: regulation by phorbol esters. Brain Res. 831:140–145.

    PubMed  Google Scholar 

  50. Davis, K. E., Sraff, D. J., Weinstein, E. A., Bannermann, P. G., Correale, D. M., Rothstein, J. D., and Robinson, M. B. 1998. Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J. Neurosci. 18:2475–2485.

    PubMed  Google Scholar 

  51. Schousboe, A. and Kanner, B. 2002. GABA transporters: functional and pharmacological properties. Pages 337–349, in Egebjerg, J., Schousboe, A., and Krogsgaard-Larsen, P. (eds.), Glutamate and GABA Receptors and Transporters, Taylor & Francis Publ., London, UK.

    Google Scholar 

  52. Schousboe, A. and Westergaard, N. 1995. Transport of neuro-active amino acids in astrocytes. Pages 246–258, in Kettenmann, H. and Ransom, B. (eds.), Neuroglia, Oxford University Press, New York.

    Google Scholar 

  53. Hertz, L. and Schousboe, A. 1987. Primary cultures of GABA-ergic and glutamatergic neurons as model systems to study neurotransmitter functions: I. Differentiated cells. Pages 19–31, in Vernadakis, A., Privat, A., Lauder, J. M., Timiras, P. S., and Giacobini, E. (eds.), Model Systems of Development and Aging of the Nervous System, M. Nijhoff Publ. Comp., Boston, MD.

    Google Scholar 

  54. Gram, L., Larsson, O. M., Johnsen, A. H., and Schousboe, A. 1988. Effects of valproate, vigabatrin and amino oxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res. 2:87–95.

    PubMed  Google Scholar 

  55. Minelli, A., DeBiasi, S., Brecha, N. C., Zuccarello, L. V., and Conti, F. 1996. GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J. Neurosci. 16:6255–6264.

    PubMed  Google Scholar 

  56. Ribak, C. E., Tong, W. M., and Brecha, N. C. 1996. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J. Comp. Neurol. 367:595–606.

    PubMed  Google Scholar 

  57. Ribak, C. E., Tong, W. M., and Brecha, N. C. 1996. Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells. Anat. Embryol. 193:379–390.

    Google Scholar 

  58. De Biasi, S., Vitellaro-Zuccarello, L., and Brecha, N. C. 1998. Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus: a light and electron-microscopic immunolocalization. Neuroscience 83:815–828.

    PubMed  Google Scholar 

  59. Borden, L. A. 1996. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem. Int. 29:335–356.

    PubMed  Google Scholar 

  60. Norenberg, M. D., Vastag, M., and Zhou, B.-G. 2000. GABA Transporters in cultured rat astrocytes and neurons. J. Neurochem. 74 (Suppl.):S80.

    Google Scholar 

  61. Ebert, U. and Krnjevic, K. 1990. Systemic CI-966, a new gamma-aminobutyric acid uptake blocker, enhances gamma-aminobutyric acid action in CA1 pyramidal layer in situ. Can. J. Physiol. Pharmacol. 68:1194–1199.

    PubMed  Google Scholar 

  62. Mitchell, S. J. and Silver, R. A. 2000. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J. Neurosci. 20:8651–8658.

    PubMed  Google Scholar 

  63. Rossi, D. J. and Hamann, M. 1998. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20:783–795.

    PubMed  Google Scholar 

  64. Ichinose, T. and Lukasiewicz, P. D. 2002. GABA transporters regulate inhibition in the retina by limiting GABAC receptor activation. J. Neurosci. 22:3285–3292.

    PubMed  Google Scholar 

  65. Fink-Jensen, A., Suzdak, P. D., Sweberg, M. D., Judge, M. E., Hansen, L., and Nielsen, P. G. 1992. The GABA uptake inhibitor, TGB, increases extracellular brain levels of GABA in awake rats. Eur. J. Pharmacol. 20:197–201.

    Google Scholar 

  66. Richards, D. A. and Bowery, N. G. 1996. Comparative effects of the GABA uptake inhibitors, tiagabine and NNC-711, on extracellular GABA levels in the rat ventrolateral thalamus. Neurochem. Res. 21:135–140.

    PubMed  Google Scholar 

  67. Juhász, G., Kékesi, K. A., Nyitrai, G., Dobolyi, A., Krogsgaard-Larsen, P., and Schousboe, A. 1997. Differential effects of nipecotic acid and 4,5,6,7–tetrahydroisoxazolo[4,5–c]pyridin-3–ol on extracellular γ-aminobutyrate levels in rat thalamus. Eur. J. Pharmacol. 331:139–144.

    PubMed  Google Scholar 

  68. Iversen, L. L. and Kelly, J. S. 1975. Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells. Biochem. Pharmacol. 24:933–938.

    PubMed  Google Scholar 

  69. Falch, E., Perregaard, J., Frølund, B., Søkilde, B., Buur, A., Hansen, L. M., Frydenvang, K., Brehm, L., Bolvig, T., Larsson, O. M., Sanchez, C., White, H. S., Schousboe, A., and Krogsgaard-Larsen, P. 1999. Selective inhibitors of glial GABA uptake: Synthesis, absolute stereochemistry and pharmacology of the enantiomers of 3–hydroxy-4–amino-4,5,6,7–tetrahydro-1, 2–benzisoxazole (Exo-THPO) and analogues. J. Med. Chem. 42:5402–5414.

    PubMed  Google Scholar 

  70. White, H. S., Sarup, A., Bolvig, T., Kristensen, A. S., Petersen, G., Nelson, N., Pickering, D. S., Larsson, O. M., Frølund, B., Krogsgaard-Larsen, P., and Schousboe, A. 2002. Correlation between anticonvulsant activity and inhibitory action on glial GABA uptake of the highly selective mouse GAT1 inhibitor 3–hydroxy-4–amino-4,5,6,7–tetrahydro-1,2–benzisoxazole (exo-THPO) and its N-alkylated analogs. J. Pharmacol. Exp. Therap. 302, 636–644.

    Google Scholar 

  71. Meldrum, B. S. 1975. Epilepsy and γ-aminobutyric acid-mediated inhibition. Int. Rev. Neurobiol. 17:1–36.

    PubMed  Google Scholar 

  72. Wood, J. D. 1975. The role of gamma-aminobutyric acid in the mechanism of seizures. Prog Neurobiol. 5:77–95.

    PubMed  Google Scholar 

  73. Löscher, W. 1998. New visions in the pharmacology of anticonvulsion. Eur. J. Pharmacol. 342:1–13.

    PubMed  Google Scholar 

  74. Suszdak, P. D. and Jansen, J. A. 1995. A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–626.

    PubMed  Google Scholar 

  75. Braestrup, C., Nielsen, E. B., Sonnewald, U., Knutsen, L. J. S., Andersen, K. E., Jansen, J. A., Frederiksen, K., Andersen, P. H., Mortensen, A., and Suzdak, P. D. 1990. (R)-N-[4,4–bis(3–methyl-2–thienyl)but-3–en-1–yl]nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake carrier, J. Neurochem. 54:639–647.

    PubMed  Google Scholar 

  76. Schousboe, A. 1979. Effects of GABA analogues on the high-affinity uptake of GABA in astrocytes in primary cultures. Pages 219–237, in Mandel, P. and De Feudis, F. V. (eds.), GABA: Biochemistry and CNS Function, Plenum Publishing, New York.

    Google Scholar 

  77. Schousboe, A., Larsson, O. M., Wood, J. D., and Krogsgaard-Larsen, P. 1983. Transport and metabolism of GABA in neurons and glia: implications for epilepsy. Epilepsia 24:531–538.

    PubMed  Google Scholar 

  78. Gonsalves, S. F., Twitchell, B., Harbaugh, R. E., and Krogsgaard-Larsen, P., and Schousboe, A. 1989. Anticonvulsant activity of intracerebroventricularly administered glial GABA uptake inhibitors and other GABAmimetics in chemical seizure models. Epilepsy Res. 4:34–41.

    PubMed  Google Scholar 

  79. Gonsalves, S. F., Twitchell, B., Harbaugh, R. E., Krogsgaard-Larsen, P., and Schousboe, A. 1989. Anticonvulsant activity of the glial GABA uptake inhibitor, THAO, in chemical seizures. Eur. J. Pharmacol. 168:265–268.

    PubMed  Google Scholar 

  80. Corey, J. L., Davidson, N., Lester, H. A., Brecha, N., and Quick, M. W. 1994. Protein kinase C modulates the activity of a cloned γ-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular distribution of the transporter J. Biol. Chem. 269:14759–14767.

    PubMed  Google Scholar 

  81. Gomeza, J., Gimenez, C., and Zafra, F. 1994. Cellular distribution and regulation by cAMP of the GABA transporter (GAT-1) mRNA. Molec. Brain Res. 21:150–156.

    PubMed  Google Scholar 

  82. Osawa, I., Saito, N., Koga, T., and Tanaka, C. 1994. Phorbol ester-induced inhibition of GABA uptake by synaptosomes and by Xenopus oocytes expressing GABA transporter (GAT-1). Neurosci. Res. 19:287–293.

    PubMed  Google Scholar 

  83. Tian, Y., Kapatos, G., Granneman, J. G., and Bannon, M. J. 1994. Dopamine and γ-aminobutyric acid transporters: Differential regulation by agents that promote phosphorylation. Neurosci. Lett. 173:143–146.

    PubMed  Google Scholar 

  84. Nissen, J., Schousboe, A., Halkier, T., and Schousboe, I. 1992. Purification and characterization of an astrocyte GABA-carrier inducing protein (GABA-CIP) released from cerebellar granule cells. Glia 6:236–243.

    PubMed  Google Scholar 

  85. Bernstein, E. M. and Quick, M. W. 1999. Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J. Biol. Chem. 274:889–895.

    PubMed  Google Scholar 

  86. Quick, M. W. 2002. Substrates regulate gamma-aminobutyric acid transporters in a syntaxin 1A-dependent manner. Proc. Natl. Acad. Sci. USA 99:5686–5691.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schousboe, A. Role of Astrocytes in the Maintenance and Modulation of Glutamatergic and GABAergic Neurotransmission. Neurochem Res 28, 347–352 (2003). https://doi.org/10.1023/A:1022397704922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022397704922

Navigation