Skip to main content
Log in

Experimental social evolution with Myxococcus xanthus

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Genetically-based social behaviors are subject to evolutionary change in response to natural selection. Numerous microbial systems provide not only the opportunity to understand the genetic mechanisms underlying specific social interactions, but also to observe evolutionary changes in sociality over short time periods. Here we summarize experiments in which behaviors of the social bacterium Myxococcus xanthus changed extensively during evolutionary adaptation to two relatively asocial laboratory environments. M. xanthus moves cooperatively, exhibits cooperative multicellular development upon starvation and also appears to prey cooperatively on other bacteria. Replicate populations of M. xanthus were evolved in both structured (agar plate) and unstructured (liquid) environments that contained abundant resources. The importance of social cooperation for evolutionary fitness in these habitats was limited by the absence of positive selection for starvation-induced spore production or predatory efficiency. Evolved populations showed major losses in all measured categories of social proficiency- motility, predation, fruiting ability, and sporulation. Moreover, several evolved genotypes were observed to exploit the social behavior of their ancestral parent when mixed together during the developmental process. These experiments that resulted in both socially defective and socially exploitative genotypes demonstrate the power of laboratory selection experiments for studying social evolution at the microbial level. Results from additional selection experiments that place positive selection pressure on social phenotypes can be integrated with direct study of natural populations to increase our understanding of principles that underlie the evolution of microbial social behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adami C, Ofria C & Collier TC (2000) Evolution of biological complexity. Proc. Natl. Acad. Sci. USA 97: 4463–4468.

    Article  PubMed  CAS  Google Scholar 

  • Adams DG (2000) Heterocyst formation in cyanobacteria. Curr. Opin. Microbiol. 3: 618–624.

    Article  PubMed  CAS  Google Scholar 

  • Bever JD & Simms EL (2000) Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity 85 Pt 4: 366–372.

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman J, Hughes D & Andersson DI (1998) Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95: 3949–3953.

    Article  PubMed  CAS  Google Scholar 

  • Bouma JE & Lenski RE (1988) Evolution of a bacteria/plasmid association. Nature 335: 351–352.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher AP & Kaiser D (1978) Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133: 763–768.

    PubMed  CAS  Google Scholar 

  • Bull HJ, McKenzie GJ, Hastings PJ & Rosenberg SM (2000) Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 154: 1427–1437.

    PubMed  CAS  Google Scholar 

  • Burkholder JM (1999) The lurking perils of Pfiesteria. Sci. Am. 281: 42–49.

    Article  PubMed  CAS  Google Scholar 

  • Chao L & Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Natl. Acad. Sci. USA 78: 6324–6328.

    Article  PubMed  CAS  Google Scholar 

  • Chao L & Tran TT (1997) The advantage of sex in the RNA virus φ6. Genetics 147: 953–959.

    PubMed  CAS  Google Scholar 

  • Cooper VS & Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407: 736–739.

    Article  PubMed  CAS  Google Scholar 

  • Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16: 178–183.

    Article  PubMed  Google Scholar 

  • Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24: 403–427.

    Article  PubMed  CAS  Google Scholar 

  • de Visser JAGM, Zeyl CW, Gerrish PJ, Blanchard JL & Lenski RE (1999) Diminishing returns from mutation supply rate in asexual populations. Science 283: 404–406.

    Article  CAS  Google Scholar 

  • Denison RF (2000) Legume sanctions and the evolution of symbiotic cooperation by Rhizobia. Am. Nat. 156: 567–576.

    Article  Google Scholar 

  • Engelberg-Kulka H & Glaser G (1999) Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53: 43–70.

    Article  PubMed  CAS  Google Scholar 

  • Giraldeau L-A & Caraco T (2000). Social Foraging Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Imhof M & Schlotterer C (2001) Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl. Acad. Sci. USA 98: 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser D (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 5952–5956.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser D, Kroos L & Kuspa A (1985). Cell interactions govern the temporal pattern of Myxococcus development. Cold Spring Harbor Symp. Quant. Biol. (pp 823–830). Cold Spring Harbor Laboratory, L: Cold Spring Harbor.

    Google Scholar 

  • Kelemen GH, Viollier PH, Tenor J, Marri L, Buttner MJ & Thompson CJ (2001) A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol. Microbiol. 40: 804–814.

    Article  PubMed  CAS  Google Scholar 

  • Kroos L, Kuspa A & Kaiser D (1986) A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117: 252–266.

    Article  PubMed  CAS  Google Scholar 

  • Lenski RE (1988a) Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425–432.

    Article  Google Scholar 

  • Lenski RE (1988b) Experimental studies of pleiotropy and epistatsis in Escherichia coli. II. Compensation for maladaptic pleiotropic effects associated with resistance to virus T4. Evolution 42: 433–440.

    Article  Google Scholar 

  • Lenski RE, Ofria C, Collier TC & Adami C (1999) Genome complexity, robustness and genetic interactions in digital organisms. Nature 400: 661–664.

    Article  PubMed  CAS  Google Scholar 

  • Lenski RE, Simpson SC & Nguyen TT (1994) Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J. Bacteriol. 176: 3140–3147.

    PubMed  CAS  Google Scholar 

  • Lewis K (2000) Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Mann J (1997) Myxobacterial bounty. Nature 385: 117.

    Article  PubMed  CAS  Google Scholar 

  • McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55: 49–75.

    Article  PubMed  CAS  Google Scholar 

  • Miguelez EM, Hardisson C & Manzanal MB (2000) Streptomycetes: a new model to study cell death. Int. Microbiol. 3: 153–158.

    PubMed  CAS  Google Scholar 

  • Miller MB & Bassler BL (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165–199.

    Article  PubMed  CAS  Google Scholar 

  • Modi RI, Wilke CM, Rosenzweig RF & Adams J (1991) Plasmid macro-evolution: selection of deletions during adaptation in a nutrient-limited environment. Genetica 84: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Moore FB-G, Rozen DE & Lenski RE (2000) Pervasive compensatory adaptation in Escherichia coli. Proc. R. Soc. Lond. B. Biol. Sci. 267: 515–522.

    Article  CAS  Google Scholar 

  • O'Conner K & Zusman D (1988) Reexamination of the role of autolysis in the development of Myxococcus xanthus. J. Bacteriol. 170: 4103–4112.

    Google Scholar 

  • O'Toole G, Kaplan HB & Kolter R (2000) Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49–79.

    Article  PubMed  Google Scholar 

  • Redfield RJ, Schrag MR & Dean AM (1997) The evolution of bacterial transformation: sex with poor relations. Genetics 146: 27–38.

    PubMed  CAS  Google Scholar 

  • Reichenbach H (1999) The ecology of the myxobacteria. Environ. Microbiol. 1: 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Ricklefs RE & Miller GL (1999). Evolution and social behavior. Ecology. W. H. Freeman and Company, New York. (pp 699–719).

    Google Scholar 

  • Rosenberg E, Keller K & Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770–777.

    PubMed  CAS  Google Scholar 

  • Rosenberg E & Varon M (1984). Antibiotics and lytic enzymes. In: Rosenberg E (Ed) Myxobacteria: Development and Cell Interactions (pp 109–125). Springer-Verlag, New York.

    Google Scholar 

  • Schrag SJ, Perrot V & Levin BR (1997) Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond. B Biol. Sci. 264: 1287–1291.

    Article  CAS  Google Scholar 

  • Shi W & Zusman DR (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 3378–3382.

    Article  PubMed  CAS  Google Scholar 

  • Shimkets L & Woese CR (1992) A phylogenetic analysis of the myxobacteria: basis for their classification. Proc. Natl. Acad. Sci. USA 89: 9459–9463.

    Article  PubMed  CAS  Google Scholar 

  • Shimkets LJ (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53: 525–549.

    Article  PubMed  CAS  Google Scholar 

  • Shub DA (1994) Bacterial viruses. Bacterial altruism? Curr. Biol. 4: 555–556.

    Article  PubMed  CAS  Google Scholar 

  • Sniegowski PD, Gerrish PJ & Lenski RE (1997) Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387: 703–705.

    Article  PubMed  CAS  Google Scholar 

  • Souza V, Turner PE & Lenski RE (1997) Long-term experimental evolution in Escherichia coli. 5. Effects of recombination with immigrant genotypes on the rate of bacterial evolution. J. Evol. Biol. 10: 743–769.

    Article  Google Scholar 

  • Spormann AM (1999) Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63: 621–641.

    PubMed  CAS  Google Scholar 

  • Stephens DW & Krebs JR (1986). Foraging Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Strassmann JE, Zhu Y & Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408: 965–967.

    Article  PubMed  CAS  Google Scholar 

  • Turner PE & Chao L (1999) Prisoner's dilemma in an RNA virus. Nature 398: 441–443.

    Article  PubMed  CAS  Google Scholar 

  • Velicer GJ, Kroos L & Lenski RE (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl. Acad. Sci. USA 95: 12376–12380.

    Article  PubMed  CAS  Google Scholar 

  • Velicer GJ, Kroos L & Lenski R (2000) Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404: 598–601.

    Article  PubMed  CAS  Google Scholar 

  • Velicer GJ, Lenski R & Kroos L (2002) Rescue of social motility lost during evolution of Myxococcus xanthus in an asocial environment. J. Bacteriol. 184: 2719–2727.

    Article  PubMed  CAS  Google Scholar 

  • Vulic M, Lenski RE & Radman M (1999) Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc. Natl. Acad. Sci. USA 96: 7348–7351.

    Article  PubMed  CAS  Google Scholar 

  • Vulic M, Kolter R (2001) Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics 158: 519–526.

    PubMed  CAS  Google Scholar 

  • Watve MG, Shete AM, Jadhav N, Wagh SA, Shelar SP, Chakraborti SS, Botre AP & Kulkarni AA (1999) Myxobacterial diversity in Indian soils-How many species do we have? Curr. Sci. 77: 1089–1095.

    Google Scholar 

  • Weijer CJ (1999) Morphogenetic cell movement in Dictyostelium. Semin. Cell Dev. Biol. 10: 609–619.

    Article  PubMed  CAS  Google Scholar 

  • Wilke CO, Wang JL, Ofria C, Lenski RE & Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412: 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Wireman JW & Dworkin M (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129: 796–802.

    CAS  Google Scholar 

  • Withers H, Swift S & Williams P (2001) Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr. Opin. Microbiol. 4: 186–193.

    Article  PubMed  CAS  Google Scholar 

  • Yu YT & Snyder L (1994) Translation elongation factor Tu cleaved by a phage-exclusion system. Proc. Natl. Acad. Sci. USA 91: 802–806.

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A & Ralt D (1984). Social adaptations in myxobacteria. In: Rosenberg E (Ed) Myxobacteria: Development and Cell Interactions (pp 215–220). Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velicer, G.J., Stredwick, K.L. Experimental social evolution with Myxococcus xanthus . Antonie Van Leeuwenhoek 81, 155–164 (2002). https://doi.org/10.1023/A:1020546130033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020546130033

Navigation