Skip to main content
Log in

On the Froissart phenomenon in multivariate homogeneous Padé approximation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In univariate Padé approximation we learn from the Froissart phenomenon that Padé approximants to perturbed Taylor series exhibit almost cancelling pole–zero combinations that are unwanted. The location of these pole–zero doublets was recently characterized for rational functions by the so‐called Froissart polynomial. In this paper the occurrence of the Froissart phenomenon is explored for the first time in a multivariate setting. Several obvious questions arise. Which definition of Padé approximant is to be used? Which multivariate rational functions should be investigated? When considering univariate projections of these functions, our analysis confirms the univariate results obtained so far in [13], under the condition that the noise is added after projection. At the same time, it is apparent from section 4 that for the unprojected multivariate Froissart polynomial no conjecture can be formulated yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Baker, Jr. and P.R. Graves-Morris, Padé Approximants (Cambridge University Press, Cambridge, UK, 2nd ed., 1996).

    Google Scholar 

  2. J.L. Basdevant, Padé approximants, in: Methods in Subnuclear Physics, Vol. IV, ed. M. Nikolic (Gordon & Breach, London, 1970) pp. 129-168.

    Google Scholar 

  3. C. Chaffy, Interpolation polynomiale et rationnelle d'une fonction de plusieurs variables complexes, Thèse, Institut National Polytechnique de Grenoble (1984).

  4. A. Cuyt, Padé Approximants for Operators: Theory and Applications, Lecture Notes in Mathematics, Vol. 1065 (Springer, Berlin, 1984).

    Google Scholar 

  5. A. Cuyt, How well can the concept of Padé approximant be generalized to the multivariate case?, J. Comput. Appl. Math. (1999).

  6. A. Cuyt, K. Driver and D. Lubinsky, Kronecker type theorems, normality and continuity of the multivariate Padé operator, Numer. Math. 73 (1996) 311-327.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Cuyt, K. Driver and D. Lubinsky, Nuttal-Pommerenke theorems for homogeneous Padé approximants, J. Comput. Appl. Math. 67 (1996) 141-146.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Cuyt and D. Lubinsky, A de Montessus theorem for multivariate homogeneous Padé approximants, Ann. Numer. Math. 4 (1997) 217-228.

    MATH  MathSciNet  Google Scholar 

  9. M. Froissart, Approximation de Padé: application à la physique des particules élémentaires, in: RCP, Programme No. 25, Vol. 9 (CNRS, Strasbourg, 1969) pp. 1-13.

    Google Scholar 

  10. J.L. Gammel, Effect of random errors (noise) in the terms of a power series on the convergence of the Padé approximants, in: Padé Approximants, ed. P.R. Graves-Morris (The Institute of Physics, London and Bristol, 1973) pp. 132-133.

    Google Scholar 

  11. J. Gilewicz, Doublets de Froissart et fonctions quasi-analytiques, in: Approximants de Padé, Lecture Notes in Mathematics, Vol. 667 (Springer, Berlin, 1978) section 6.4, pp. 306-313.

    Google Scholar 

  12. J. Gilewicz and M. Pindor, Padé approximants and noise: a case of geometric series, J. Comput. Appl. Math. 87(2) (1997) 199-214.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Gilewicz and M. Pindor, Padé approximants and noise: Rational functions, J. Comput. Appl. Math. (1999).

  14. J. Gilewicz and B. Truong-Van, Froissart doublets in the Padé approximation and noise, in: Constructive Theory of Functions '87, Proc. Internat. Conf. on Constructive Theory of Functions, Varna, 1987, eds. B. Sendov, P. Petrushev, K. Ivanov and R. Maleev (Publishing House of the Bulgarian Academy of Sciences, Sofia, 1988) pp. 145-151.

    Google Scholar 

  15. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  16. J.A. Tupper, Graphing equations with generalized interval arithmetic, Master's thesis, Department of Computer Science, University of Toronto (1996). Software available at http://www.peda.com/grafeq/.

  17. H. Werner, Multivariate Padé approximation, Numer. Math. 48 (1986) 429-440.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becuwe, S., Cuyt, A. On the Froissart phenomenon in multivariate homogeneous Padé approximation. Advances in Computational Mathematics 11, 21–40 (1999). https://doi.org/10.1023/A:1018911623074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018911623074

Navigation