Skip to main content
Log in

A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The synthesis, modification, and breakdown of carbohydrates is one of the most fundamentally important reactions in nature. The structural and functional diversity of glycosides is mirrored by a vast array of enzymes involved in their synthesis (glycosyltransferases), modification (carbohydrate esterases) and breakdown (glycoside hydrolases and polysaccharide lyases). The importance of these processes is reflected in the dedication of 1–2% of an organism's genes to glycoside hydrolases and glycosyltransferases alone. In plants, these processes are of particular importance for cell-wall synthesis and expansion, starch metabolism, defence against pathogens, symbiosis and signalling. Here we present an analysis of over 730 open reading frames representing the two main classes of carbohydrate-active enzymes, glycoside hydrolases and glycosyltransferases, in the genome of Arabidopsis thaliana. The vast importance of these enzymes in cell-wall formation and degradation is revealed along with the unexpected dominance of pectin degradation in Arabidopsis, with at least 170 open-reading frames dedicated solely to this task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Aoki, S. and Syno, K. 1999. Horizontal gene transfer and mutation: ngrol genes in the genome of Nicotiana glauca. Proc. Natl. Acad. Sci. USA 96: 13229–13234.

    Google Scholar 

  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Benhamou, N. 1995. Immunocytochemistry of plant defense mechanisms induced upon microbial attack. Microsc. Res. Tech. 31 63–78.

    Google Scholar 

  • Bishop, J.G., Dean, A.M. and Mitchell-Olds, T. 2000. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc. Natl. Acad. Sci. USA 97: 5322–5327.

    Google Scholar 

  • Burmeister, W.P., Cottaz, S., Rollin, P., Vasella, A. and Henrissat, B. 2000. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J. Biol. Chem. 275: 39385–39393.

    Google Scholar 

  • Callebaut, I., Labesse, G., Durand, P., Poupon, A., Canard, L., Chomilier, J., Henrissat, B. and Mornon, J.P. 1997. Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell. Mol. Life Sci. 53: 621–645.

    Google Scholar 

  • Campbell, J.A., Davies, G.J., Bulone, V. and Henrissat, B. 1997. A classification of nucleotide-diphospho-sugar glycosyltrans-ferases based on amino acid sequence similarities. Biochem. J. 326: 929–939.

    Google Scholar 

  • Campbell, P. and Braam, J. 1999. In vitro activities of four xy-loglucan endotransglycosylases from Arabidopsis. Plant J. 18: 371–382.

    Google Scholar 

  • Charnock, S.J., Bolam, D.N., Turkenburg, J.P., Gilbert, H.J., Ferreira, L.M., Davies, G.J. and Fontes, C.M. 2000. The X6 ‘thermostabilizing’ domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 5013–5021.

    Google Scholar 

  • Charnock, S.J. and Davies, G.J. 1999. Structure of the nucleotidediphospho-sugar transferase, SpsA from Bacillus subtilis,in native and nucleotide-complexed forms. Biochemistry 38: 6380–6385.

    Google Scholar 

  • Charnock, S.J., Henrissat, B. and Davies, G. 2001. Three-dimensional structures of UDP-sugar glycosyltransferases illuminate the biosynthesis of plant polysaccharides. Plant Physiol. 125: 527–531.

    Google Scholar 

  • Cicek, M., Blanchard, D., Bevan, D.R. and Esen, A. 2000. The aglycone specificity-determining sites are different in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (maize β-glucosidase) and dhurrinase (sorghum β-glucosidase). J. Biol. Chem. 275: 20002–20011.

    Google Scholar 

  • Coughlan, M.P. and Hazlewood, G.P. 1993. β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259–289.

    Google Scholar 

  • Coutinho, P. and Henrissat, B. 1999a. Carbohydrateactive enzymes: an integrated database approach. In: H. Gilbert, G. Davies, B. Henrissat and B. Svensson (Eds.) Recent Advances in Carbohydrate Bioengineering, Royal Society of Chemistry, Cambridge, UK, pp. 3–12.

    Google Scholar 

  • Coutinho, P.M. and Henrissat, B. 1999b. Life with no sugars? J. Mol. Microbiol. Biotechnol. 1: 307–308.

    Google Scholar 

  • Cui, X., Shin, H., Charlotte Song, C., Laosinchai1, W., Amano, Y. and Brown, R.M. Jr. 2001. A putative plant homolog of the yeast β-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta, in press.

  • Davies, G. and Henrissat, B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859.

    Google Scholar 

  • Davies, G.J. 1998. Structural studies on cellulases. Biochem. Soc. Transact. 26: 167–173.

    Google Scholar 

  • Dejardin, A., Sokolov, L.N. and Kleczkowski, L.A. 1999. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344: 503–509.

    Google Scholar 

  • Dijkwel, P.P., Huijser, C., Weisbeek, P.J., Chua, N.H. and Smeekens, S.C. 1997. Sucrose control of phytochrome A signaling in Arabidopsis. Plant Cell 9: 583–595.

    Google Scholar 

  • Doblin, M.S., De Melis, L., Newbigin, E., Bacic, A. and Read, S.M. 2001. Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol., in press.

  • Dolan, L., Linstead, P. and Roberts, K. 1997. Developmental regulation of pectic polysaccharides in the root meristem of Arabidopsis. J. Exp. Bot. 48: 713–720.

    Google Scholar 

  • Dörmann, P., Balbo, I. and Benning, C. 1999. Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181–2184.

    Google Scholar 

  • Garcia-Vallvé, S., Romeu, A. and Palau, J. 2000. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol. Biol. Evol. 17: 352–361.

    Google Scholar 

  • Gastinel, L.N., Cambillau, C. and Bourne, Y. 1999. Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18: 3546–3557.

    Google Scholar 

  • Gebler, J., Gilkes, N.R., Claeyssens, M., Wilson, D.B., Béguin, P., Wakarchuk, W.W., Kilburn, D.G., Miller, R.C. Jr., Warren, R.A. and Withers, S.G. 1992. Stereoselective hydrolysis catalyzed by related β-1,4-glucanases and β-1,4-xylanases. J. Biol. Chem. 26: 12559–12561.

    Google Scholar 

  • Ha, S., Walker, D., Shi, Y. and Walker, S. 2000. The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated gly-cosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9: 1045–1052.

    Google Scholar 

  • Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.

    Google Scholar 

  • Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781–788.

    Google Scholar 

  • Henrissat, B. and Bairoch, A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695–696.

    Google Scholar 

  • Henrissat, B. and Davies, G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637–644.

    Google Scholar 

  • Henrissat, B. and Davies, G. 2000. Glycoside hydrolases and glycosyltransferases: families, modules and implications for genomics. Plant Physiol. 124: 1515–1520.

    Google Scholar 

  • Hong, Z., Delauney, A.J. and Verma, D.P.S. 2001. A cell platespecific callose synthase and its interaction with phragmoplastin. Plant Cell, in press.

  • Hrmova, H. and Fincher, G.B. 2001. Three-dimensional structures, substrate specificities and biological functions of β-D-glucan endo-and exohydrolases from higher plants. Plant Mol. Biol., this issue.

  • Jin, W., Horner, H.T., Palmer, R.G. and Shoemaker, R.C. 1999. Analysis and mapping of gene families encoding β-1,3-glucanases of soybean. Genetics 153: 445–452.

    Google Scholar 

  • Kaiser, J. 2000. From genome to functional genomics. Science 288: 1715.

    Google Scholar 

  • Kottom, T.J. and Limper, A.H. 2000. Cell wall assembly by Pneu-mocystis carinii: evidence for a unique Gsc-1 subunit mediating β-1,3-glucan deposition. J. Biol. Chem. 275: 40628–40634.

    Google Scholar 

  • Kraulis, P.J. 1991. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950.

    Google Scholar 

  • Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.C., Gomord, V. and Faye, L. 1998. N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38: 31–48

    Google Scholar 

  • Little, E., Bork, P. and Doolittle, R.F. 1994. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J. Mol. Evol. 39: 631–643.

    Google Scholar 

  • McCarter, J.D. and Withers, S.G. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4: 885–892.

    Google Scholar 

  • Minton, J.P., Walaszek, Z., Schooley, W., Hanausek-Walaszek M., and Webb, T.E. 1986. β-Glucuronidase levels in patients with fibrocystic breast disease. Breast Cancer Res. Treatm. 8: 217–222.

    Google Scholar 

  • Mita, S., Murano, N., Akaike, M. and Nakamura, K. 1997. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 11: 841–851.

    Google Scholar 

  • Myers, A.M., Morell, M.K., James, M.G. and Ball, S.G. 2000. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 122: 989–997.

    Google Scholar 

  • Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H. and Hofte, H. 1998. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17: 5563–5576.

    Google Scholar 

  • Ochman, H., Lawrence, J.G. and Groisman, E.A. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304.

    Google Scholar 

  • Pedersen, L.C., Tsuchida, K., Kitagawa, H., Sugahara, K., Darden, T.A. and Negishi, M. 2000. Heparan/chondroitin sulfate biosynthesis: structure and mechanism of human glucuronyltransferase I. J. Biol. Chem. 275: 34580–34585.

    Google Scholar 

  • Perrin, R.M., DeRocher, A.E., Bar-Peled, M., Zeng, W., Noram-buena, L., Orellana, A., Raikhel, N.V. and Keegstra, K. 1999. Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284: 1976–1979.

    Google Scholar 

  • Perrin, R., Wilkerson, C. and Keegstra, K. 2001. Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Plant Mol. Biol., this issue.

  • Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. and Meijer, J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93–113.

    Google Scholar 

  • Reymond, P. and Farmer, E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404–411.

    Google Scholar 

  • Richmond, T.A. and Somerville, C.R. 2001. Integrative approaches to determining Csl function. Plant Mol. Biol., this issue.

  • Sears, P. and Wong, C.H. 1998. Enzyme action in glycoprotein synthesis. Cell. Mol. Life Sci. 54: 223–252.

    Google Scholar 

  • Shimojima, M., Ohta, H., Iwamatsu, A., Masuda, T., Shioi, Y. and Takamiya, K. 1997. Cloning of the gene for monogalactosyldiacylglycerol synthase and its evolutionary origin. Proc. Natl. Acad. Sci. USA 94: 333–337.

    Google Scholar 

  • Sinnott, M.L. 1990. Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90: 1171–1202.

    Google Scholar 

  • Smant, G., Stokkermans, J.P., Yan, Y., de Boer, J.M., Baum, T.J., Wang, X., Hussey, R.S., Gommers, F.J., Henrissat, B., Davis, E.L., Helder, J., Schots, A. and Bakker, J. 1998. Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95: 4906–4911.

    Google Scholar 

  • Spiro, M.D., Ridley, B.L., Eberhard, S., Kates, K.A., Mathieu, Y., O'Neill, M.A., Mohnen, D., Guern, J., Darvill, A. and Alber-sheim, P. 1998. Biological activity of reducing-end-derivatized oligogalacturonides in tobacco tissue cultures. Plant Physiol. 116: 1289–1298.

    Google Scholar 

  • Strasser, R., Mucha, J., Mach, L., Altmann, F., Wilson, I.B., Glossl, J. and Steinkellner, H. 2000. Molecular cloning and functional expression of â-1,2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett. 472: 105–108.

    Google Scholar 

  • Strasser, R., Mucha, J., Schwihla, H., Altmann, F., Glossl, J. and Steinkellner, H. 1999. Molecular cloning and characteriza-tion of cDNA coding for β-1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum. Glycobiology 9: 779–785.

    Google Scholar 

  • Sturm, A. and Tang, G.Q. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4: 401–407.

    Google Scholar 

  • Tukey, R. and Strassburg, C. 2000. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40: 581–616.

    Google Scholar 

  • Ñnligil, U., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H. and Rini, J. 2000. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19: 5269–5280.

    Google Scholar 

  • Vrielink, A., Ruger, W., Driessen, H.P. and Freemont, P.S. 1994. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13: 3413–3422.

    Google Scholar 

  • Wingler, A., Fritzius, T., Wiemken, A., Boller, T. and Aeschbacher, R.A. 2000. Trehalose induces the ADP-glucose pyrophospho-rylase gene, ApL3, and starch synthesis in Arabidopsis.Plant Physiol. 124: 105–114.

    Google Scholar 

  • Zechel, D.L. and Withers, S.G. 2000. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33: 11–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrissat, B., Coutinho, P.M. & Davies, G.J. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol 47, 55–72 (2001). https://doi.org/10.1023/A:1010667012056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010667012056

Navigation