Skip to main content
Log in

Weakly dissipative predator-prey systems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the presence of seasonal forcing, predator-prey models with quadratic interaction terms and weak dissipation can exhibit infinite numbers of coexisting periodic attractors corresponding to cycles of different magnitude and frequency. These motions are best understood with reference to the conservative case, for which the degree of dissipation is, by definition, zero. Here one observes the familiar mix of “regular” (neutrally stable orbits and tori) and chaotic motion typical of non-integrable Hamiltonian systems. Perturbing away from the conservative limit, the chaos becomes transitory. In addition, the invariant tori are destroyed and the neutrally stable periodic orbits becomes stable limit cycles, the basins of attraction of which are intertwined in a complicated fashion. As a result, stochastic perturbations can bounce the system from one basin to another with consequent changes in system behavior. Biologically, weak dissipation corresponds to the case in which predators are able to regulate the density of their prey well below carrying capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altieri, M. A. 1991. How best can we use biodiversity in agroecosystems?Outlook on Agriculture 20, 15–23.

    Google Scholar 

  • Altieri, M. A. and L. L. Schmidt. 1986. Cover crops affect insect and spider populations in apple orchards.California Agriculture 40, 15–17.

    Google Scholar 

  • Altieri, M. A. and W. H. Whitcomb. 1979. The potential use of weeds in the manipulation of beneficial insects.Hort. Sci. 14, 12.

    Google Scholar 

  • Ayres, M. 1993. Plant defense, herbivory and climate change. InBiotic Interactions and Global Change, P. M. Kareiva, J. G. Kingsolver and R. B. Huey (Eds.) Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Beddington, J. R., C. A. Free and J. H. Lawton. 1978. Characteristics of successuful natural enemies in models of biological control of insect pests.Nature 273, 513–519.

    Article  Google Scholar 

  • Brust, G. E. and L. R. King. 1994. Effects of crop rotation and reduced chemical inputs on pests and predators in maize agroecosystems.Agriculture, Ecosystems, and Environment 48, 77–89.

    Article  Google Scholar 

  • Crawley, M. J. 1992.Natural Enemies: The Population Biology of Predators, Parasites, and Diseases. Boston, MA: Blackwell Scientific.

    Google Scholar 

  • Debach, P. and D. Rosen. 1991.Biological Control by Natural Enemies, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Doutt, R. L. and J. Nakata. 1973. Therubus grasshopper and its egg parasitoid: an endemic biotic system useful in grape-pest management.Environmental Entomology,2, 381–386.

    Google Scholar 

  • Ehrlich, P. R. and L. C. Birch. 1967. The “balance of nature” and “population control”.Amer. Natur. 101, 97–107.

    Article  Google Scholar 

  • Gleissman, S. R. and M. A. Altieri. 1982. Polyculture cropping has advantages.California Agriculture 36, 14–16.

    Google Scholar 

  • Godfrey, L. D. and T. F. Leigh. 1994. Alfalfa harvest strategy on lygus bug (Hemiptera miridae) and insect predator population density: implications for use as a trap crop in cotton.Environ. Entomol. 23, 1106–1118.

    Google Scholar 

  • Goel, N. S., S. C. Maitra and E. W. Montroll. 1971. On the Volterra and other nonlinear models of interacting populations.Rev. Mod. Phys. 43, 231–276.

    Article  MathSciNet  Google Scholar 

  • Gumowski, I. and C. Mira. 1980.Recurrences and Discrete Dynamical Systems. Berlin: Springer-Verlag.

    Google Scholar 

  • Hairston, N. G. 1989.Ecological Experiment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hairston, N. G., F. E. Smith and L. B. Slobodkin. 1960. Community structure, population control and competition.Amer. Natur. 94, 421–425.

    Article  Google Scholar 

  • Hénon, M. 1983. Numerical explorations of Hamiltonian systems. InChaotic Behavior of Deterministic Systems, G. Iooss, R. H. Helleman and R. Stora (Eds). Amsterdam: North-Holland.

    Google Scholar 

  • Huffaker, C. B. and P. S. Messenger. 1976.Theory and Practice of Biological Control. New York: Academic Press.

    Google Scholar 

  • Inoue, M. and H. Kamifukumoto. 1984. Scenarios leading to chaos is forced Lotka-Volterra model.Prog. Theor. Phys. 71, 930–937.

    Article  MATH  MathSciNet  Google Scholar 

  • Kerner, E. H. 1957. A statistical mechanics of interacting biological species.Bull. Math. Biophys. 19, 121–146.

    MathSciNet  Google Scholar 

  • Kerner, E. H. 1959. Further considerations on the statistical mechanics of biological associations.Bull. Math. Biophys. 23, 141–157.

    MathSciNet  Google Scholar 

  • Kot, M., G. S. Sayler and T. W. Schulz. 1992. Complex dynamics in a model microbial system.Bull. Math. Biol. 54, 619–648.

    MATH  Google Scholar 

  • Lagerlöf, J. and H. Wallin. 1993. The abundance of arthropods along two field margins with different types of vegetation composition: an experimental study.Agriculture, Ecosystems, and Environment 43, 141–154.

    Article  Google Scholar 

  • Leigh, E. G. 1965. On the relation between the productivity, biomass, diversity, and stability of a community.Proc. Natl. Acad. Sci. U.S.A. 53, 777–783.

    Article  MATH  Google Scholar 

  • Leigh, E. G. 1968. The ecological role of Volterra's equations. InSome Mathematical Problems in Biology, M. Gerstenhaber (Ed), Providence, RI: American Mathematical Society.

    Google Scholar 

  • Leigh, E. G. 1975. Population fluctuations, community stability, and environmental variability. InEvolution of Species Communities, M. Cody and J. Diamond (Eds) Cambridge, MA: Belknap Press.

    Google Scholar 

  • Levins, R. 1968.Evolution in Changing Environments. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lichtenberg, A. J. and M. A. Lieberman. 1992.Regular and Chaotic Dynamics, 3rd ed. New York: Springer-Verlag.

    Google Scholar 

  • Lin, C. C. and L. A. Segel. 1974.Mathematics Applied to Deterministic Problems in the Natural Sciences. New York: MacMillan.

    Google Scholar 

  • MacArthur, R. H. 1969. Species packing and what competition minimizes.Proc. Natl. Acad. Sci. U.S.A. 64, 1369–1371.

    Article  Google Scholar 

  • MacArthur, R. H. 1970. Species packing and competitive equilibrium for many species.Theoret. Population Biol. 1, 1–11.

    Article  Google Scholar 

  • MacDonald, S. W.,et al. 1985. Fractal basin boundaries.Physica D 17, 125–153.

    Article  MathSciNet  Google Scholar 

  • Marion, J. B. 1970.Classical Dynamics of Particles and Systems. New York: Academic Press.

    Google Scholar 

  • May, R. M. 1973.Complexity and Stability in Model Ecosystems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Maynard Smith, J. 1974.Models in Ecology. London: Cambridge University Press.

    Google Scholar 

  • Mira, C. 1987.Chaotic Dynamics. Singapore: World Scientific.

    Google Scholar 

  • Morris, R. F. 1963. The dynamics of endemic spruce budworm populations.Mem. Entomol. Soc. Canada 21, 1–322.

    Google Scholar 

  • Murdoch, W. W. 1966. Community structure, population control and competition—A critique.Amer. Natur. 100, 219–226.

    Article  Google Scholar 

  • Murdoch, W. W.. 1975. Diversity, complexity, stability and pest control.J. Appl. Ecol. 12, 795–807.

    Article  Google Scholar 

  • Murray, J. D. 1993.Mathematical Biology, 2nd ed, Berlin: Springer-Verlag.

    Google Scholar 

  • Paoletti, M. G.et al. 1989. Animal and plant interactions in agroecosystems: the case of the woodland remnants in northeastern Italy.Ecol. Int. Bull. 17, 79–91.

    Google Scholar 

  • Pimentel, D.et al. 1991. Environmental and economic impacts of reducting U.S. agricultural pesticide use. InCRC Handbook of Pest Management in Agriculture, D. Pimentel (Ed), Vol. II. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rand, D. A. and H. Wilson. 1991. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics.Proc. Roy. Soc. Lond. Ser. B 246, 179–184.

    Google Scholar 

  • Rinaldi, S. and S. Muratori. 1993. Conditioned chaos in seasonally perturbed predator-prey models.Ecol. Model. 69, 79–97.

    Article  Google Scholar 

  • Rinaldi, S., S. Muratori and Y. A. Kuznetsov. 1993. Multiple attractors, catastrophes, and chaos in seasonally perturbed predator-prey communities.Bull. Math. Biol. 55, 15–35.

    MATH  Google Scholar 

  • Rosen, R. 1970.Dynamical System Theory in Biology. 1. Stability Theory and its Applications. New York: Wiley Interscience.

    Google Scholar 

  • Rosenzweig, M. L. 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science 171, 385–387.

    Google Scholar 

  • Ruelle, D. 1979. Sensitive dependence on initial conditions.Ann. N.Y. Acad. Sci. 316, 408–416.

    MATH  MathSciNet  Google Scholar 

  • Schaffer, W. M. 1988. Perceiving order in the chaos of nature. InEvolution of Life Histories of Mammals, M. S. Boyce (Ed), pp. 313–350. New Haven, CT: Yale University Press.

    Google Scholar 

  • Schwerdtfäger, F. 1941. Über die ursachen des massenwechels des insekten.Z. Angew. Ent. 28, 254–303.

    Google Scholar 

  • Slobodkin, L. B., F. E. Smith and N. G. Hairston. 1967. Regulation in terrestrial ecosystems and the implied balance of nature.Am. Nat. 101, 109–124.

    Article  Google Scholar 

  • Stern, V. 1969. Implanting alfalfa in cotton to control lygus bugs and other insects.Proc. Tall Timbers Conf. Ecol. Anim. Control Habitat Mgmt. 1, 54.

    Google Scholar 

  • Tabor, M. 1989.Chaos and Integrability in Nonlinear Systems, New York: Wiley.

    Google Scholar 

  • Thompson, J. M. T. and H. B. Stewart. 1986.Nonlinear Dynamics and Chaos, Chichester: Wiley.

    Google Scholar 

  • Tsang, K. Y. and M. A. Lieberman. 1986. Transient chaotic distributions in dissipative systems.Physica D 21, 401–414.

    Article  MATH  MathSciNet  Google Scholar 

  • Varley, G. C. 1949. Special review: population changes in German forest pests.J. Anim. Ecol. 18, 117–122.

    Article  Google Scholar 

  • Whitcomb, W. H. and K. E. Godfrey. 1991. The use of predators in insect control. InCRC Handbook of Pest Management in Agriculture, D. Pimentel (Ed.), Vol. II. Boca Raton, FL: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, A.A., Schaffer, W.M., Gordon, C. et al. Weakly dissipative predator-prey systems. Bltn Mathcal Biology 58, 835–859 (1996). https://doi.org/10.1007/BF02459486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459486

Keywords

Navigation