Skip to main content
Log in

Effectiveness of Ipragliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor, as a Second-line Treatment for Non-Alcoholic Fatty Liver Disease Patients with Type 2 Diabetes Mellitus Who Do Not Respond to Incretin-Based Therapies Including Glucagon-like Peptide-1 Analogs and Dipeptidyl Peptidase-4 Inhibitors

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background

We previously reported that incretin-based drugs, such as dipeptidyl peptidase-4 (DPP-4) inhibitors or glucagon-like peptide-1 (GLP-1) analogs, improved glycemic control and liver inflammation in non-alcoholic fatty liver disease (NAFLD) patients with type 2 diabetes mellitus (T2DM). However, the effect on alanine aminotransferase (ALT) normalization was still limited.

Aims

The aim of this study is to elucidate the effectiveness of sodium-glucose co-transporter 2 (SGLT-2) inhibitors as second-line treatments for NAFLD patients with T2DM who do not respond to incretin-based therapy.

Methods

We retrospectively enrolled 130 consecutive Japanese NAFLD patients with T2DM who were treated with GLP-1 analogs or DPP-4 inhibitors. Among them, 70 patients (53.8 %) had normal ALT levels. Of the remaining 60 patients (46.2 %) who did not have normal ALT levels, 24 (40.0 %) were enrolled in our study and were administered SGLT-2 inhibitors in addition to GLP-1 analogs or DPP-4 inhibitors. We compared changes in laboratory data including ALT levels and body weight at the end of the follow-up.

Results

Thirteen patients were administered a combination of SGLT-2 inhibitors with DPP-4 inhibitors, and the remaining 11 patients were administered a combination of SGLT-2 inhibitors with GLP-1 analogs. The median dosing period was 320 days. At the end of the follow-up, body weight (from 84.8 to 81.7 kg, p < 0.01) and glycosylated hemoglobin levels (from 8.4 to 7.6 %, p < 0.01) decreased significantly. Serum ALT levels also decreased significantly (from 62 to 38 IU/L, p < 0.01) with an improvement in the FIB-4 index (from 1.75 to 1.39, p = 0.04). Finally, 14 patients (58.3 %) achieved normalization of serum ALT levels.

Conclusions

Administration of SGLT-2 inhibitors led to not only good glycemic control, but also to a reduction in body weight, normalization of ALT levels, and a reduction in the FIB-4 index even in patients who did not respond to incretin-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol. 2003;98:960–7.

    Article  CAS  PubMed  Google Scholar 

  2. Charlton M. Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin Gastroenterol Hepatol. 2004;2:1048–58.

    Article  PubMed  Google Scholar 

  3. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology. 2003;37:1202–19.

    Article  PubMed  Google Scholar 

  4. Angelico F, Del Ben M, Conti R, et al. Insulin resistance, the metabolic syndrome, and nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2005;90:1578–82.

    Article  CAS  PubMed  Google Scholar 

  5. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.

    Article  CAS  PubMed  Google Scholar 

  6. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dixon JB, Bhathal PS, Hughes NR, et al. Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology. 2004;39:1647–54.

    Article  PubMed  Google Scholar 

  8. Promrat K, Kleiner DE, Niemeier HM, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Veltkamp SA, Kadokura T, Krauwinkel WJ, et al. Effect of ipragliflozin (ASP1941), a novel selective sodium-dependent glucose co-transporter 2 inhibitor, on urinary glucose excretion in healthy subjects. Clin Drug Investig. 2011;31:839–51.

    Article  CAS  PubMed  Google Scholar 

  10. Fonseca VA, Ferrannini E, Wilding JP, et al. Active- and placebo-controlled dose-finding study to assess the efficacy, safety, and tolerability of multiple doses of ipragliflozin in patients with type 2 diabetes mellitus. J Diabetes Complicat. 2013;27:268–73.

    Article  PubMed  Google Scholar 

  11. Kurosaki E, Ogasawara H. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther. 2013;139:51–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mori H, Okada Y, Kawaguchi M. A case of diabetes mellitus with NASH successfully treated using integrated therapy including ipragliflozin. J Japan Diabetes Soc. 2015;58:286–92.

    Google Scholar 

  13. Marre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with type 2 diabetes (LEAD-1 SU). Diabet Med. 2009;26:268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwasaki T, Yoneda M, Inamori M, et al. Sitagliptin as a novel treatment agent for non-alcoholic fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology. 2011;58:2103–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ohki T, Isogawa A, Iwamoto M, et al. The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone. Sci World J. 2012;2012:496453.

    Article  Google Scholar 

  16. Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43:1317–25.

    Article  CAS  PubMed  Google Scholar 

  17. von Elm E, Altman DG, Egger M, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335:806–8.

    Article  Google Scholar 

  18. Ludwig J, Viggiano TR, McGill DB, et al. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55:434–8.

    CAS  PubMed  Google Scholar 

  19. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–95.

    Article  PubMed  Google Scholar 

  20. Bugianesi E, Gentilcore E, Manini R, et al. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol. 2005;100:1082–90.

    Article  CAS  PubMed  Google Scholar 

  21. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355:2297–307.

    Article  CAS  PubMed  Google Scholar 

  22. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844–50.

    Article  CAS  PubMed  Google Scholar 

  23. Hayashizaki-Someya Y, Kurosaki E, Takasu T, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;754:19–24.

    Article  CAS  PubMed  Google Scholar 

  24. Wang RT, Koretz RL, Yee HF Jr. Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review. Am J Med. 2003;115:554–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Ohki.

Ethics declarations

Contributions

The first author collected all the data and wrote this article. Dr. A. Isogawa, N. Toda, and Dr. K. Tagawa are outpatient clinic doctors who contributed to this study.

Funding

This study received no funding.

Informed consent

Oral informed consent was obtained from all patients when they began treatment but was not required for the present analyses because this was a retrospective study.

Conflict of interest

Takamasa Ohki has received speaking fees from Otsuka Pharmaceutical Co., Ltd. The other authors have nothing to disclose.

Ethical approval

Formal approval was not required for this type of study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohki, T., Isogawa, A., Toda, N. et al. Effectiveness of Ipragliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor, as a Second-line Treatment for Non-Alcoholic Fatty Liver Disease Patients with Type 2 Diabetes Mellitus Who Do Not Respond to Incretin-Based Therapies Including Glucagon-like Peptide-1 Analogs and Dipeptidyl Peptidase-4 Inhibitors. Clin Drug Investig 36, 313–319 (2016). https://doi.org/10.1007/s40261-016-0383-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-016-0383-1

Keywords

Navigation