Skip to main content

Advertisement

Log in

Sex-Dependent Behavioral Functions of the Purkinje Cell-Specific Gαi/o Binding Protein, Pcp2(L7)

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

We previously reported motor and non-motor enhancements in a mouse mutant with an inactivated Purkinje cell-specific gene, Pcp2(L7), that encodes a GoLoco domain-containing modulator of Gi/o protein-coupled receptors. Effects included elevated learning asymptote with repeated rotarod training, increased acquisition rate in tone-cued fear conditioning (FC), and subtle male-specific changes in both acoustic startle habituation and pre-pulse inhibition. We have further analyzed this mutant strain this time with a focus on male–female differences, and here we report a sex-dependent anxiety-like phenotype: male mutants are less anxious, and female mutants are more anxious, than same-sex wild types. Similarly, the fear responses measured during the tone in FC acquisition are decreased in male mutants and increased in female mutants relative to same-sex wild types. Overall, the dynamics of both acquisition and extinction of FC is affected in mutants but memory was not affected. In the social realm, compositional analysis of sociability and preference for social novelty data supports that both L7 genotype and sex contribute to these behaviors. These results provide direct evidence of emotional functions of the cerebellum due to the unambiguous cerebellar specificity of Pcp2(L7) expression and the lack of any confounding motor defects in the mutant. We attempt to synthesize these new data with what is previously known both about Pcp2(L7) and about the effects of sex and sex hormones on anxiety and fear behaviors: specifically, L7 is a bidirectional and sex-dependent damper that regulates the amplitude and/or rate of sensorimotor responses, potentially acting as a mood stabilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aitchison J. The statistical analysis of compositional data. London: Chapman and Hall; 1986.

    Book  Google Scholar 

  2. Andreescu CE, Milojkovic BA, Haasdijk ED, Kramer P, De Jong FH, Krust A, et al. Estradiol improves cerebellar memory formation by activating estrogen receptor β. J Neurosci. 2007;27:10832–9.

    Article  PubMed  CAS  Google Scholar 

  3. Bian F, Chu T, Schilling K, Oberdick J. Differential mRNA transport and the regulation of protein synthesis: selective sensitivity of Purkinje cell dendritic mRNAs to translational inhibition. Mol Cell Neurosci. 1996;7:116–33.

    Article  PubMed  CAS  Google Scholar 

  4. Bishop GA, Ho RH. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res. 1985;331:195–207.

    Article  PubMed  CAS  Google Scholar 

  5. Boele H, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci. 2010;3:1–13.

    Article  Google Scholar 

  6. Courchesne E. Brainstem, cerebellar, and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7:269–78.

    Article  PubMed  CAS  Google Scholar 

  7. Critchley HD, Daly EM, Bullmore ET, Williams SCR, Van Amelsvoort T, Robertson DM, et al. The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain. 2000;123:2203–12.

    Article  PubMed  Google Scholar 

  8. Crusio WE, Goldowitz D, Holmes A, Wolfer D. Standards for the publication of mouse mutant studies. Genes Brain Behav. 2009;8:1–4.

    Article  PubMed  CAS  Google Scholar 

  9. De Zeeuw CI, Hansel C, Bian F, Koekkoek SKE, van Alphen AM, Linden DJ, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998;20:495–508.

    Article  PubMed  Google Scholar 

  10. Filardo EJ, Quinn JA, Bland KI, Frackelton AR. Estrogen-induced activation of Erk-1 and Erk-2 requires the G-protein receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrin. 2000;14:1649–60.

    Article  CAS  Google Scholar 

  11. Fricke O, Kow L, Bogun M, Pfaff DW. Estrogen evokes a rapid effect on intracellular calcium in neurons characterized by calcium oscillations in the arcuate nucleus. Endocr. 2007;31:279–88.

    Article  CAS  Google Scholar 

  12. Gold DA, Baek SH, Schork NJ, Rose DW, Larsen DD, Sachs BD, et al. RORα coordinates reciprocal signaling in cerebellar development through Sonic hedgehog and calcium-dependent pathways. Neuron. 2003;40:1119–31.

    Article  PubMed  CAS  Google Scholar 

  13. Gur TL, Conti AC, Holden J, Blendy JA. cAMP response element-binding protein deficiency allows for increased neurogenesis and a rapid onset of antidepressant response. J Neurosci. 2007;27:7860–8.

    Article  PubMed  CAS  Google Scholar 

  14. Haines DE, Dietrichs E, Sowa TE. Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers and affective behavior. Brain Behav Evol. 1984;24:198–220.

    Article  PubMed  CAS  Google Scholar 

  15. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, et al. Disruption of the nuclear receptor RORα in staggerer mice. Nature. 1996;379:736–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hazell GGJ, Yao ST, Roper JA, Prossnitz ER, O’Carroll A, Lolait SJ. Localisation of GPR30, a novel G-protein coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrin. 2009;202:223–36.

    Article  CAS  Google Scholar 

  17. Hoaglin DC, Iglewicz B, Tukey JW. Performance of some resistant rules for outlier labeling. J Am Stat Assoc. 1986;81:991–9.

    Article  Google Scholar 

  18. Iscru E, Serinagaoglu Y, Schilling K, Tian J, Bowers-Kidder SL, Zhang R, et al. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7). Mol Cell Neurosci. 2009;40:62–75.

    Article  PubMed  CAS  Google Scholar 

  19. Jasnow AM, Schulkin J, Pfaff DW. Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mRNA expression in the central amygdala in female mice. Hormones Behav. 2006;49:197–205.

    Article  CAS  Google Scholar 

  20. Joffe H, Cohen LS. Estrogen, serotonin, and mood disturbance: where is the therapeutic bridge? Biol Psychiatry. 1998;44:798–811.

    Article  PubMed  CAS  Google Scholar 

  21. Kinoshita-Kawada M, Oberdick J, Zhu MX. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Mol Brain Res. 2004;132:73–86.

    Article  PubMed  CAS  Google Scholar 

  22. Koekkoek SKE, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJH, et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science. 2003;301:1736–9.

    Article  PubMed  CAS  Google Scholar 

  23. Koibuchi N, Kimura-Kuroda J, Ikeda Y, Tsutsui K. Cerebellum, a target for hormonal signaling. Cerebellum. 2008;7:499–504.

    Article  CAS  Google Scholar 

  24. Koziol LF, Budding DE, Chidekel D. Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings. Cerebellum. 2011;10:770–92.

    Article  PubMed  Google Scholar 

  25. Lalonde R, Kim HD, Fukuchi K. Exploratory activity, anxiety, and motor coordination in bigenic APPswe + PS1/ΔE9 mice. Neurosci Letts. 2004;369:156–61.

    Article  CAS  Google Scholar 

  26. McCullagh P, Nelder JA. Generalized linear models. 2nd ed. New York: Chapman and Hall; 1989.

    Google Scholar 

  27. Mendoza J, Pévet P, Felder-Schmittbuhl MP, Bailly Y, Challet E. The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci. 2010;30:1894–904.

    Article  PubMed  CAS  Google Scholar 

  28. Merchentaler I, Lane MV, Numan S, Dellovade TL. Distribution of estrogen receptor α and β in the mouse central nervous system: in vivo autoradiographic and immunocytochemical analyses. J Comp Neurol. 2004;473:270–91.

    Article  Google Scholar 

  29. Morgan MA, Pfaff DW. Effects of estrogen on activity and fear-related behaviors in mice. Hormones Beh. 2001;40:472–82.

    Article  CAS  Google Scholar 

  30. Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132:2413–25.

    Article  PubMed  Google Scholar 

  31. Moy SS, Nadler JJ, Barbaro RP, Johns JM, Magnuson TR, Piven J, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic behavior in mice. Genes Brain Behav. 2004;3:287–302.

    Article  PubMed  CAS  Google Scholar 

  32. Moy SS, Nadler JJ, Young NB, Nonneman RJ, Segall SK, Andrade GM, et al. Social approach and repetitive behavior in eleven inbred mouse strains. Behav Brain Res. 2008;191:118–29.

    Article  PubMed  Google Scholar 

  33. Moy SS, Nonneman RJ, Young NB, Demyanenko GP, Maness PF. Impaired sociability and cognitive function in Nrcam-null mice. Behav Brain Res. 2009;205:123–31.

    Article  PubMed  CAS  Google Scholar 

  34. Nadler JJ, Moy SS, Dold G, Simmons N, Perez A, Young NB, et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 2004;3:303–14.

    Article  PubMed  CAS  Google Scholar 

  35. Nguon K, Ladd B, Baxter MG, Sajdel-Sulkowska EM. Sexual dimorphism in cerebellar structure, function, and response to environmental perturbations. Prog Brain Res. 2005;148:343–51.

    Google Scholar 

  36. Odawara H, Iwasaki T, Horiguchi J, Rokutanda N, Hirooka K, Miyazaki W, et al. Activation of aromatase expression by retinoic acid receptor-related orphan receptor (ROR) alpha in breast cancer cells: identification of a novel ROR response element. J Biol Chem. 2009;284:17711–9.

    Article  PubMed  CAS  Google Scholar 

  37. Pinheiro JC, Bates DM. Mixed-effects models in S and S-plus. Heidelberg: Springer; 2004.

    Google Scholar 

  38. Rapkin AJ, Berman SM, Mandelkern MA, Silverman DHS, Morgan M, London ED. Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biol Psychiatry. 2011;69:374–80.

    Article  PubMed  Google Scholar 

  39. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL: http://www.R-project.org/

  40. Reed MN, Liu P, Kotilinek LA, Ashe KH. Effect size of reference memory deficits in the Morris water maze in Tg2576 mice. Behav Brain Res. 2010;212:115–20.

    Article  PubMed  Google Scholar 

  41. Richter SH, Garner JP, Wurbel H. Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods. 2009;6:257–61.

    Article  PubMed  CAS  Google Scholar 

  42. Riva D, Georgia C. The contribution of the cerebellum to mental and social functions in developmental age. Human Physiol. 2000;26:21–5.

    Article  Google Scholar 

  43. Rousseeuw PJ, Leroy AM. Robust regression and outlier detection. New York: Wiley; 1987.

    Book  Google Scholar 

  44. Rubinow DR, Schmidt PJ, Roca CA. Estrogen-serotonin interactions: implications for affective regulation. Biol Psychiatry. 1998;44:839–50.

    Article  PubMed  CAS  Google Scholar 

  45. Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA. 2002;99:8406–11.

    Article  PubMed  CAS  Google Scholar 

  46. Sacchetti B, Scelfo B, Tempia F, Strata P. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron. 2004;42:973–82.

    Article  PubMed  CAS  Google Scholar 

  47. Sakamoto H, Ukena K, Tsutsui K. Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci. 2001;21:6221–32.

    PubMed  CAS  Google Scholar 

  48. Sarachana T, Xu M, Wu RC, Hu VW. Sex hormones in autism: androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism. PLoS One. 2011;6(2):e17116.

    Article  PubMed  CAS  Google Scholar 

  49. Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE, Simek AA, et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron. 2011;70:43–50.

    Article  PubMed  CAS  Google Scholar 

  50. Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Rev. 2004;44:103–16.

    Article  PubMed  Google Scholar 

  51. Serinagaoglu Y, Zhang R, Zhang Y, Zhang L, Hartt G, Young AP, et al. A promoter element with enhancer properties, and the orphan nuclear receptor RORα, are required for Purkinje cell-specific expression of a Gi/o modulator. Mol Cell Neurosci. 2007;34:324–42.

    Article  PubMed  CAS  Google Scholar 

  52. Simons MJ, Pellionisz AJ. Genomics, morphogenesis and biophysics: triangulation of Purkinje cell development. Cerebellum. 2006;5:27–35.

    Article  PubMed  CAS  Google Scholar 

  53. Simpson JI, Wylie DR, De Zeeuw CI. On climbing fiber signals and their consequences. Behav Brain Sci. 1996;19:368–83.

    Article  Google Scholar 

  54. Sokal RR, Rohlf FJ. Biometry. New York: W.H. Freemann and Company; 1994. p. 240f.

    Google Scholar 

  55. Sterneck E, Paylor R, Jackson-Lewis V, Crawley JN, Johnson PF. Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein δ. Proc Natl Acad Sci USA. 1998;95:10908–13.

    Article  PubMed  CAS  Google Scholar 

  56. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  57. Talarovicova A, Krskova L, Blazekova J. Testosterone enhancement during pregnancy influences the 2D:4D ratio and open field motor activity of rat siblings in adulthood. Horm Behav. 2009;55:235–9.

    Article  PubMed  CAS  Google Scholar 

  58. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.

    Article  PubMed  Google Scholar 

  59. Tesche CD, Karhu JJ. Anticipatory cerebellar responses during somatosensory omission in man. Hum Brain Mapp. 2000;9:119–42.

    Article  PubMed  CAS  Google Scholar 

  60. van den Boogaart KG, Tolosana-Delgado R. “Compositions”: a unified R package to analyze compositional data. Comput Geosci. 2008;34:320–38.

    Article  Google Scholar 

  61. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, et al. Role of olivary electrical coupling in cerebellar motor learning. Neuron 2008;58:599–612.

  62. Van Dongen HP, Olofsen E, Dinges DF, Maislin G. Mixed-model regression analysis and dealing with interindividual differences. Meth Enzymol. 2004;384:139–71.

    Article  PubMed  Google Scholar 

  63. Vassileva G, Smeyne RJ, Morgan JI. Absence of neuroanatomical and behavioral deficits in L7/Pcp2 null mice. Mol Brain Res. 1997;46:333–7.

    Article  PubMed  CAS  Google Scholar 

  64. Wahlsten D, Bachmanov A, Finn DA, Crabbe JC. Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci USA. 2006;103:16364–9.

    Article  PubMed  CAS  Google Scholar 

  65. Wanner I, Baader S, Oberdick J, Schilling K. Changing subcellular distribution and activity-dependent utilization of a dendritically localized mRNA in developing Purkinje cells. Mol Cell Neurosci. 2000;15:275–87.

    Article  PubMed  CAS  Google Scholar 

  66. Webb CK, McCudden CR, Willard FS, Kimple RJ, Siderovski DP, Oxford GS. D2 dopamine receptor activation of potassium channels is selectively decoupled by Gαi-specific GoLoco motif proteins. J Neurochem. 2005;92:1408–18.

    Article  PubMed  CAS  Google Scholar 

  67. Weltje GJ. Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth Sci Rev. 2002;57:211–53.

    Article  CAS  Google Scholar 

  68. Wood GE, Shors TJ. Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proc Natl Acad Sci USA. 1998;95:4066–71.

    Article  PubMed  CAS  Google Scholar 

  69. Xu Y, Sulaiman P, Feddersen RM, Liu J, Smith RG, Vardi N. Retinal ON bipolar cells express a new Pcp2 splice variant that accelerates the light response. J Neurosci. 2008;28:8873–84.

    Article  PubMed  CAS  Google Scholar 

  70. Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw.; 27(8). URL: http://www.jstatsoft.org/v27/i08/

Download references

Acknowledgments

This research was supported by NIH grant RO1-NS37504 to JO. Additional support was provided from NIH grant P30-NS045758. We thank Dr. Derick Lindquist for his critical reading of the manuscript.

Conflicts of Interest

The authors declare they have no conflicts of interest and are aware of no individuals or entity that would benefit from the studies described herein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karl Schilling or John Oberdick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Lack of significant genotype contributions in long-term fear memory extinction when freezing is measured during the inter-trial interval. The normalized percent freezing decreases with repeated CS-alone trials when freezing is measured during the interval between trials. Note that there is significant extinction (asterisk, trial 1 vs. trial 8), and that there is no observable anticipation in the first few trials as there is when freezing is measured during the tone (see Fig. 2). *p < 0.05, calculated from un-normalized data (JPEG 253 kb)

Figure S2

Increased motor learning on the rotarod in sexually mature males. Mutant males (left panel) have a significantly different learning curve shape than wild-type males primarily due to an increased learning asymptote; *p < 0.05 for genotype × trial interaction. This is a subset of data we reported earlier [18]. In that study, we showed a significant individual effect of genotype in adolescent mutants (two cohorts, 4–5 weeks old), and a significant individual effect of genotype in males alone when the data from adolescent and mature cohorts were pooled (four cohorts total) (JPEG 289 kb)

Figure S3

Compositional analysis of preference for social novelty data. When both genotypes are considered together, there is a significant sex effect as determined by lack of overlap of 95% confidence ellipses (JPEG 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walton, J.C., Schilling, K., Nelson, R.J. et al. Sex-Dependent Behavioral Functions of the Purkinje Cell-Specific Gαi/o Binding Protein, Pcp2(L7). Cerebellum 11, 982–1001 (2012). https://doi.org/10.1007/s12311-012-0368-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0368-4

Keywords

Navigation