Skip to main content

Advertisement

Log in

Japanese research and development on metallic biomedical, dental, and healthcare materials

  • Overview
  • Feature
  • Published:
JOM Aims and scope Submit manuscript

Abstract

There is considerable demand for metallic materials for use in medical and dental devices. Metals and alloys are widely used as biomedical materials and are indispensable in the medical field. In dentistry, metal is used for restorations, orthodontic wires, and dental implants. This article describes R&D on metallic biomaterials primarily conducted by the members of the Japan Institute of Metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Niinomi et al., “Development of Low Rigidity β-type Titanium Alloy for Biomedical Applications,” Mater. Trans., 43 (12) (2002).

  2. M. Niinomi, T. Hattori, and S. Niwa, “Material Characteristics and Biocompatibility of Low Rigidity Titanium Alloys for Biomedical Applications,” Biomaterials in Orthopedics, ed. M.J. Yaszemski et al. (New York: Marcel Dekker, Inc., 2004), pp. 41–62.

    Google Scholar 

  3. M. Niinomi et al., “Dental Precision Casting of Ti-29Nb-13Ta-4.6Zr Using Calcia Mold,” Mater. Sci. Forum, 475–479 (2005), pp. 2303–2308.

    Google Scholar 

  4. M. Niinomi et al., “Mechanical Properties and Cytotoxicity of Newly Designed Beta Type Titanium Alloys with Low Melting Points for Dental Applications,” Mater. Sci. and Eng. C, in press.

  5. A. Ozawa et al., J. Jpn Soc. Dental Mater. Dev., Special Issue 38, 20 (2001).

    Google Scholar 

  6. H. Kawasaki et al., “Mechanical Properties of Ti-Fe-Ta System Alloys for Biomedical Applications,” Proc. Fall Meet. Jpn. Inst. Met. (2003), p. 130.

  7. A. Ou et al., “Properties of Ti-Zr-Nb-Ta System Bio-Soft Titanium Alloy,” Proc. Annl. Meet. Jpn. Inst. Met. (Sendai, Japan: Japan Institute of Metals, 2003), p. 326.

    Google Scholar 

  8. Y.L. Zhou et al., “Effect of Ta Content on Young’s Modulus and Microstructure of Binary Ti-Ta Alloys,” Proc. ATEM’03 (2003), CD-ROM.

  9. Y.L. Zhou, M. Niinomi, and T. Akahori, “Decomposition of Martensite α″ during Aging Treatments and Resulting Mechanical Properties of Ti-Ta Alloys,” Mater. Sci. Eng. A., A371 (2004), pp. 283–290.

    CAS  Google Scholar 

  10. Y.L. Zhou, M. Niinomi, and T. Akahori, “Dynamic Young’s Modulus and Mechanical Properties of Ti-Hf Alloys,” Mater. Transactions, 45 (5) (2004), pp. 1549–1554.

    Article  CAS  Google Scholar 

  11. P.J. Uggowitzer, W.F. Bähre, and M.O. Speidel, “Metal Injection Molding of Ni-Free Stainless Steels,” Proc. Adv. Powder Metal, Part Mater., vol. 3 (1997), pp. 18-113–18-121.

    Google Scholar 

  12. T. Yoneyama et al., “Mechanical Properties and Phase Transformation of Ti-Ni Super Elastic Alloy for Dental Application,” Proc. of 4th Asian International Symposium on Biomaterials (AISB4) and 2nd International Symposium on Fusion of Nano and Bio TechnologiesAISB4 and FNB2004, Tsukuba, Japan, pp. 241–242.

  13. M. Okuyama et al., “Effect of Plasma Spray and Surface Sealing Treatment of Ni-Ti Shape Memory Alloy Applying to Biomaterials,” Mater. Trans., 45 (4) (2004), pp. 1045–1053.

    Article  CAS  Google Scholar 

  14. Y. Ogata et al., “Tensile Strength and Pseudoelasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wire,” Mater. Trans., 45 (4) (2004), pp. 1070–1076.

    Article  CAS  Google Scholar 

  15. K. Nitta et al., “Ni-Free Ti-Nb-Sn Shape Memory Alloys,” Structural Biomaterials for the 21st Century, ed. M. Niinomi et al. (Warrendale, PA: TMS, 2001).

    Google Scholar 

  16. H.Y. Kim et al., “Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys,” Mater. Trans., 45 (4) (2004), pp. 1090–1095.

    Article  CAS  Google Scholar 

  17. T. Inamura et al., “Relationship between Texture and Macroscopic Transformation Strain in Severely Cold-Rolled Ti-Nb-Al Super Elastic Alloy,” Mater. Trans., 45 (4) (2004), pp. 1083–1089.

    Article  CAS  Google Scholar 

  18. H. Hosoda, N. Hosoda, and S. Miyazaki, “Mechanical Properties of Ti-Mo-Al Biomedical Shape Memory Alloys,” Trans. MRSJ, 26 (1) (2001), pp. 243–246.

    CAS  Google Scholar 

  19. M. Ikeda, S. Komatsu, and Y. Nakamura, “Effects of Sn and Zr Additions on Phase Constitution and Aging Behavior of Ti-50 Mass% Ta Alloys Quenched from β Single Phase Region,” Mater. Trans., 45 (4) (2004), pp. 1106–1112.

    Article  CAS  Google Scholar 

  20. K. Toyoshima, T. Hirasawa, and M. Ikeda, “Effect of Zr Addition on Phase Constitution and Heat Treatment Behavior of Ti-35 Mass% Nb Alloy,” Proc. Ann. Meet. Jpn. Inst. Met. (Sendai, Japan: Japan Institute of Metals, 2003), p. 130.

    Google Scholar 

  21. T. Maeshima and M. Nishida, “Shape Memory and Mechanical Properties of Biomedical Ti-Sc-Mo Alloy,” Mater. Trans., 45 (4) (2004), pp. 1101–1105.

    Article  CAS  Google Scholar 

  22. T. Maeshima and M. Nishida, “Shape Memory Properties of Biomedical Ti-Mo-Ag and Ti-Mo-Sn Alloys,” Mater. Trans., 45 (4) (2004), pp. 1096–1100.

    Article  CAS  Google Scholar 

  23. N. Sakaguchi, M. Niinomi, and T. Akahori, “Deformation Behaviors of Ti-Nb-Ta-Zr System Alloys for Biomedical Applications,” Mater. Trans., 45 (4) (2004), pp. 1113–1119.

    Article  Google Scholar 

  24. H. Hosoda and S. Miyazaki, “Recent Topics of Shape Memory Materials and Related Technology,” J. Jpn. Soc. Mechanical Engineers, 107 (1028) (2004), pp. 509–520.

    Google Scholar 

  25. M. Niinomi, “Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods,” Science and Technology for Advanced Materials, 4 (2003), pp. 445–454.

    Article  CAS  Google Scholar 

  26. Y. Okazaki, “Implant Applications of Highly Corrosion-resistant Ti-15Zr-4Nb-4Ta Alloy,” Mater. Trans., 43 (12) (2002), pp. 2936–2942.

    Article  Google Scholar 

  27. Y. Okazaki, “Dental Casting Properties of Ti-15Zr-4Nb-4Ta Alloy,” Mater. Trans., 43 (12) (2002), pp. 3134–3141.

    Article  CAS  Google Scholar 

  28. V. Srimaneepong et al., “Strain and Displacement of Ti-6Al-7Nb Alloy Casting for Removable Partial Denture Frameworks,” Proc. of 4th Asian International Symposium on Biomaterials (AISB4) and 2nd International Symposium on Fusion of Nano and Bio Technologies, Tsukuba, Japan, pp. 237–238.

  29. M. Ikeda, “The Effect of Cooling Rate from Solution Treatment Temperature on Phase Constitution and Tensile Properties of Ti-4.3Fe-7.1Cr-3.0Al Alloy,” Mater. Trans., 45 (5) (2004), pp. 1566–1576.

    Article  CAS  Google Scholar 

  30. T. Hanawa et al., “Properties of Ni-Free Stainless Steel for Biomedical and Dental Use,” Proc. of 4th Asian International Symposium on Biomaterials (AISB4) and 2nd International Symposium on Fusion of Nano and Bio Technologies, Tsukuba, Japan, pp. 67–69.

  31. D. Kuroda et al., “Characterization of the Surface Oxide Film of Nickel-free Austenitic Stainless Steel Located in Simulated Body Environments,” Mater. Trans., 43 (12) (2002), pp. 3093–3099.

    Article  CAS  Google Scholar 

  32. D. Kuroda et al., “Corrosion Behavior of Nickel-Free Nitrogen Austenitic Stainless Steel in Simulated Body Environment,” Mater. Trans., 43 (12) (2002), pp. 3100–3104.

    Article  CAS  Google Scholar 

  33. A. Yamamoto et al., “Cytotoxicity Evaluation of Ni-free Stainless Steel Manufactured by Nitrogen Absorption Treatment,” Mater. Sci. Eng., C24 (2004), pp. 737–744.

    CAS  Google Scholar 

  34. K. Uenishi et al., “Microstructure and Tensile Strength of Stainless Steel Wires Micro Spot Melted by YAG Laser,” Mater. Trans., 43 (12) (2002), pp. 3065–3071.

    Article  Google Scholar 

  35. A. Chiba et al., “Mechanical Properties of Forged Low Ni and C-Containing Co-Cr-Mo Biomedical Implant Alloy,” Mater. Sci. Forum, 475–479 (2005), pp. 2317–2322.

    Google Scholar 

  36. A.J.T. Clemow and B.L. Daniell, Wear, 61 (1980) 291–231.

    Article  Google Scholar 

  37. C.V. Cooper et al., Transactions of the ASME, 111 (1989), 668.

    Article  CAS  Google Scholar 

  38. T. Mizumoto et al., “Fatigue Properties of Cast Ag-Pd-Cu-Au-Zn Alloy for Dental Applications in the Relation with Casting Defects,” Mater. Trans., 43 (12) (2002), pp. 3160–3166.

    Article  CAS  Google Scholar 

  39. S. Takahashi et al., “Effect of Precipitated β Phase on Fracture Toughness of Ag-Pd-Cu-Au Alloy,” Jpn. J. Dent. Mater., 19 (2) (2000), pp. 162–169.

    CAS  Google Scholar 

  40. A. Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys,” Acta Mater., 48 (2000), pp. 279–306.

    Article  CAS  Google Scholar 

  41. S. Hiromoto et al., “Corrosion Behavior of Zirconium Based Amorphous Alloys for Biomedical Use,” Mater. Trans., 42 (4) (2001), pp. 656–659.

    Article  CAS  Google Scholar 

  42. S. Hiromoto et al., “Appearance of a Negative Loop on the Polarization Curves of Pd78Si16Cu6−xCrx Amorphous Alloys in Phosphate Buffered Saline Solution,” Corros. Sci., 43 (2001), pp. 1767–1779.

    Article  CAS  Google Scholar 

  43. S. Hiromoto et al., “Surface Characterization of Amorphous Zr-Al-(Ni,Cu) Alloys Immersed in Cell-Culture Medium,” Mater. Trans., 43 (2) (2002), pp. 261–266.

    Article  CAS  Google Scholar 

  44. T. Hanawa and M. Ota, “Calcium Phosphate Naturally Formed on Titanium in Electrolyte Solution,” Biomaterials, 12 (1991), pp. 767–774.

    Article  CAS  Google Scholar 

  45. T. Hanawa, “Titanium and Its Oxide Film: a Substrate for Formation of Apatite,” The Bone-Biomaterial Interface, ed. J.E. Davies (Toronto, Canada: University of Toronto Press, 1991), pp. 49–61.

    Google Scholar 

  46. T. Hanawa and M. Ota, “Characterization of Surface Film Formed on Titanium in Electrolyte,” Appl. Surf. Sci., 55 (1992), pp. 269–276.

    Article  CAS  Google Scholar 

  47. T. Hanawa, O. Okuno, and H. Hamanaka, “Compositional Change in Surface of Ti-Zr Alloys in Artificial Bioliquid,” J. Jpn. Inst. Met., 56 (1992), pp. 1168–1173.

    CAS  Google Scholar 

  48. T. Hanawa et al., “Surface Oxide Films on Titanium Alloys Regenerated in Hanks’ Solution,” Mater. Trans., 43 (2002), pp. 3000–3004.

    Article  CAS  Google Scholar 

  49. S. Hiromoto et al., “Comparison of Surface Oxide Film of Titanium with Culturing Murine Fibroblasts L929,” Biomaterials, 25 (2004), pp. 979–986.

    Article  CAS  Google Scholar 

  50. T. Hanawa, S. Hiromoto, and K. Asami, “Characterization of the Surface Oxide Film of a Co-Cr-Mo Alloy after Being Located in Quasi-biological Environments using XPS,” Appl. Surf. Sci., 183 (2001), pp. 68–75.

    Article  CAS  Google Scholar 

  51. T. Hanawa et al., “XPS Characterization of the Surface Oxide Film of 316L Stainless Samples that Were Located in Quasi-biological Environments,” Mater. Trans., 43 (2002), pp. 3088–3092.

    Article  CAS  Google Scholar 

  52. Y. Okazaki and E. Gotoh, “Comparison of Metal Release from Various Metallic Biomaterials in Vitro,” Biomaterials, 26 (2005), pp. 11–21.

    Article  CAS  Google Scholar 

  53. Y. Okazaki et al., “Comparison of Metal Concentrations in Rat Tibia Tissues with Various Metallic Implants,” Biomaterials, 25 (2004), pp. 5913–5920.

    Article  CAS  Google Scholar 

  54. T. Hanawa et al., “Effect of Biological Factors on the Repassivation Current of Titanium,” Mater. Trans., 45 (5) (2004), pp. 1635–1639.

    Article  CAS  Google Scholar 

  55. S. Hiromoto, K. Noda, and T. Hanawa, “Development of Electrolytic Cell with Cell-culture for Metallic Biomaterials,” Corros. Sci., 44 (2002), pp. 955–965.

    Article  CAS  Google Scholar 

  56. S. Hiromoto, K. Noda, and T. Hanawa, “Electrochemical Properties of an Interface between Titanium and Fibroblasts L929,” Electrochim. Acta, 48 (2002), pp. 387–396.

    Article  CAS  Google Scholar 

  57. A. Yamamoto et al., “Cytotoxicity Evaluation of 43 Metal Salts Using Murine Fibroblasts and Osteoblastic Cells,” J. Biomed. Mater. Res., 39 (1998), pp. 331–340.

    Article  CAS  Google Scholar 

  58. A. Yamamoto et al., “Mutagenicity Evaluation of Forty-one Metal Salts by the Umu Test,” J. Biomed. Mater. Res., 59 (2002), pp. 176–183.

    Article  CAS  Google Scholar 

  59. Y. Okazaki and E. Gotoh, “Effect of Metal Released from Ti Alloy Wear Powder on Cell Viability,” Mater. Trans. JIM, 41 (9) (2000), pp. 1247–1255.

    CAS  Google Scholar 

  60. A. Yamamoto et al., “Cytotoxicity Evaluation of Ceramic Particles of Different Sizes and Shapes,” J. Biomed. Mater. Res., 68A (2004), pp. 244–256.

    Article  CAS  Google Scholar 

  61. Y. Mu et al., “Metal Ion Release from Titanium with Active Oxygen Species Generated by Rat Macrophages in vitro,” J. Biomed. Mater. Res., 49 (2000), pp. 238–243.

    Article  CAS  Google Scholar 

  62. A. Yamamoto et al., “Cytotoxicity of Pseudo-Body Fluids as Environment of Fretting Fatigue Test of Metallic Biomaterials,” Proc. 4th Jpn. International SAMPE Symp. (Covina, California: SAMPE 1995), p. 638.

    Google Scholar 

  63. M. Yoshinari et al., “Dry-Process Surface Modification for Titanium Dental Implants,” Metall. Mater. Trans. A, 33A (2002), pp. 511–519.

    Article  Google Scholar 

  64. T. Kasuga et al., “Calcium Phosphate Invert Glass-Ceramic Coatings Joined by Self-Development of Compositionally Gradient Layers on a Titanium Alloy,” Biomaterials, 22 (2001), pp. 577–582.

    Article  CAS  Google Scholar 

  65. M. Okido et al., “Hydroxyapatite Coating on Titanium by Means of Thermal Substrate Method in Aqueous Solutions,” Solid State Ionics, 151 (2002), pp. 47–52.

    Article  CAS  Google Scholar 

  66. K. van Dijk et al., “Measurement and Control of Interface Strength of RF Magnetron-Sputtered Ca-PO Coatings on Ti-6Al-4V Substrates Using a Laser Spallation Technique,” J. Biomed. Mater. Res., 41 (1998), pp. 624–632.

    Article  Google Scholar 

  67. R. Takamura et al., “The Bone Response of Titanium Implant with Calcium Ion Implantation,” J. Dent. Res., 76 (5) (1997), p. 1177.

    Google Scholar 

  68. N. Ohtsu et al., “Evaluation of Degradability of CaTiO3 Thin Films in Simulated Body Fluids,” Mater. Trans., 45 (5) (2004), pp. 1778–1781.

    Article  CAS  Google Scholar 

  69. T. Nakano et al., “Unique Alignment and Texture of Biological Apatite Crystallites in Typical Calcified Tissue Analyzed by Microbeam X-ray Diffractometer System,” Bone, 31 (4) (2002), pp. 479–487.

    Article  CAS  Google Scholar 

  70. T. Nakano et al., “Synthesis of Apatite Ceramics with Preferential Crystal Orientation,” Mater. Sci. Forum, 449–452 (2004), pp. 1289–1292.

    Google Scholar 

  71. K. Inoue et al., “Control of Crystal Orientation of Hydroxyapatite by Using a High Magnetic Field,” Key Eng. Mater., 240–2 (2003), pp. 513–516.

    Article  Google Scholar 

  72. M. Niinomi, “Fatigue Characteristics and Microstructure of Titanium Alloys for Biomedical Applications,” Proc. Fatigue 2002, Vol. 3/5, ed. A.F. Blom (Barnsley, England: EMAS Publishing, 2002), pp. 2073–2083.

    Google Scholar 

  73. M. Niinomi, “Cyto-toxicity and Fatigue Performance of Low Rigidity Titanium Alloy, Ti-29Nb-13Ta-4.6Zr, for Biomedical Applications,” Biomaterials, 24 (2003), pp. 2673–2683.

    Article  CAS  Google Scholar 

  74. M. Niinomi et al., “Fretting Fatigue Characteristics in Air and Simulated Body Environment of Newly Developed β Type Titanium Alloy for Biomedical Applications,” J. Iron and Steel Inst. Jpn., 88 (9) (2002), pp. 553–560.

    CAS  Google Scholar 

  75. N. Mruyama et al., “Effect of Stress Frequency of Fatigue and Fretting Fatigue Life for Commercially Pure Ti and Ti-6Al-4V Alloy in Pseudo-Body Fluid,” J. Jpn. Inst. Biomaterials, 18 (1) (2000), pp. 17–23.

    Google Scholar 

  76. S.J. Li et al., “Wear Characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V Alloys for Biomedical Applications,” Wear, 257 (2004), pp. 869–876.

    Article  CAS  Google Scholar 

  77. K. Ueda et al., “Wear Loss and Elution of C.P. Ti and Titanium Alloys in Simulated Body Fluid,” Mater. Sci. Forum, 475–479 (2005), pp. 2333–2336.

    Google Scholar 

  78. Y. Tamura et al., “Mechanical Properties of Surface Nitrided Titanium for Abrasion Resistant Implant Materials,” Mater. Trans., 43 (12) (2002), pp. 3043–3051.

    Article  CAS  Google Scholar 

  79. T. Akahori et al., “Effect of Thermomechanical Treatment on Fatigue Characteristics of Ti-29Nb-13Ta-4.6Zr Alloy for Biomedical Applications,” J. Jpn. Inst. Met., 67 (11) (2003), pp. 652–660.

    CAS  Google Scholar 

  80. M. Niinomi et al., “Fretting Fatigue Characteristics of Newly Developed β Type Titanium Alloy in Air and Simulated Body Environment,” J. Iron and Steel Inst. Jpn., 88 (9) (2002), pp. 553–560.

    CAS  Google Scholar 

  81. T. Akahori et al., “Fatigue, Fretting Fatigue and Corrosion Characteristics of Biocompatible Beta Type Titanium Alloy Conducted with Various Thermo-Mechanical Treatments,” Mater. Trans., 45 (5) (2004), pp. 1540–1548.

    Article  CAS  Google Scholar 

  82. K. Nakazawa, “Fatigue and Fretting Fatigue of Austenite and Ferritic Stainless Steels in Pseudo-Body Fluid,” J. Jpn. Inst. Met., 63 (12) (1999), pp. 1600–1608.

    CAS  Google Scholar 

  83. N. Maruyama et al., “Fatigue and Fretting Fatigue of Ni Free Co-Cr Alloy in a Pseudo-Body Fluid,” J. Jpn. Biomaterials Inst., 17 (4) (1999), pp. 172–179.

    CAS  Google Scholar 

  84. T. Akahori et al., “Microstructure and Fatigue Characteristics of Newly Developed β Type Ti-29Nb-13Ta-4.6Zr Alloy for Biomedical Applications,” J. Jpn. Inst. Met., 66 (7) (2002), pp. 715–722.

    CAS  Google Scholar 

  85. M. Niinomi et al., “Friction Wear of Surface Oxidized Newly Developed β Type Titanium Alloy for Biomedical Applications in Simulated Body Environment,” J. Iron Steel Inst. Jpn., 88 (9) (2002), pp. 567–574.

    Google Scholar 

  86. T. Mano et al., “Formation of Diamond-like Carbon Based Double-Layer Film on Ti-6Al-4V Substrate by Ionization Deposition,” Mater. Trans., 45 (5) (2004), pp. 1601–1606.

    Article  CAS  Google Scholar 

  87. K. Nishio et al., “Surface Modification of Titanium Using Laser Beam,” Mater. Trans., 45 (5) (2004), pp. 1613–1619.

    Article  CAS  Google Scholar 

  88. M. Okazaki, “Standardization and Activation of Industry,” Materia Japan, 43 (3) (2004), pp. 182–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Mitsuo Niinomi, Toyohashi University of Technology, Department of Production Systems Engineering, 1-1 Hibarigaoka, Tempaku-cho.Toyohashi 441-8580, Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niinomi, M., Hanawa, T. & Narushima, T. Japanese research and development on metallic biomedical, dental, and healthcare materials. JOM 57, 18–24 (2005). https://doi.org/10.1007/s11837-005-0076-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0076-3

Keywords

Navigation