Skip to main content
Log in

Geometric structure in smooth dual and local Langlands conjecture

  • Special Feature: The Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

This expository paper first reviews some basic facts about p-adic fields, reductive p-adic groups, and the local Langlands conjecture. If G is a reductive p-adic group, then the smooth dual of G is the set of equivalence classes of smooth irreducible representations of G. The representations are on vector spaces over the complex numbers. In a canonical way, the smooth dual is the disjoint union of subsets known as the Bernstein components. According to a conjecture due to ABPS (Aubert–Baum–Plymen–Solleveld), each Bernstein component has a geometric structure given by an appropriate extended quotient. The paper states this ABPS conjecture and then indicates evidence for the conjecture, and its connection to the local Langlands conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arthur J.: A note on L-packets. Pure Appl. Math. Q. 2, 199–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, Amer. Math. Soc. Colloq. Publ., 61, Amer. Math. Soc., Providence, RI, 2013.

  3. A.-M. Aubert, P. Baum and R.J. Plymen, The Hecke algebra of a reductive p-adic group: a geometric conjecture, In: Noncommutative Geometry and Number Theory, (eds. C. Consani and M. Marcolli), Aspects Math., 37, Vieweg Verlag, Wiesbaden, 2006, pp. 1–34.

  4. Aubert A.-M, Baum P, Plymen R.J: Geometric structure in the representation theory of p-adic groups. C. R. Math. Acad. Sci. Paris 345, 573–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubert A.-M, Baum P, Plymen R.J: Geometric structure in the principal series of the p-adic group G 2. Represent. Theory 15, 126–169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.-M. Aubert, P. Baum and R.J. Plymen, Geometric structure in the representation theory of reductive p-adic groups. II, In: Harmonic Analysis on Reductive p-adic Groups, (eds. R.S. Doran, P.J. Sally, Jr. and L. Spice), Contemp. Math., 543, Amer. Math. Soc., Providence, RI, 2011, pp. 71–90.

  7. A.-M. Aubert, P. Baum, R.J. Plymen and M. Solleveld, Geometric structure and the local Langlands conjecture, preprint, arXiv:1211.0180v2.

  8. A.-M. Aubert, P. Baum, R.J. Plymen and M. Solleveld, The local Langlands correspondence for inner forms of SL n , preprint, arXiv:1305.2638.

  9. A.-M. Aubert, P. Baum, R.J. Plymen and M. Solleveld, On the local Langlands correspondence for non-tempered representations, Münster J. Math., to appear.

  10. Baum P, Nistor V: Periodic cyclic homology of Iwahori–Hecke algebras. C. R. Acad. Sci. Paris Sér. I Math. 332, 783–788 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baum P, Nistor V: Periodic cyclic homology of Iwahori–Hecke algebras.. K-Theory 27, 329–357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.N. Bernstein, Le centre de Bernstein. Edited by P. Deligne, In: Representations of Reductive Groups Over a Local Field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32.

  13. J.N. Bernstein and S. Gelbart, An Introduction to the Langlands Program, Birkhäuser, 2003.

  14. J.N. Bernstein and K.E. Rumelhart, Representations of p-adic Groups, Harvard Mathematics Department Lecture Notes, 1993.

  15. A. Borel, Automorphic L-functions, In: Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, pp. 27–61.

  16. J. Dixmier, C*-Algebras, North-Holland, 1977.

  17. M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. of Math. Stud., 151, Princeton Univ. Press, Princeton, NJ, 2001.

  18. Henniart G.: Une preuve simple de conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139, 439–455 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Hiraga and H. Saito, On L-packets for Inner Forms of SL n , Mem. Amer. Math. Soc., 215, Amer. Math. Soc., Providence, RI, 2012.

  20. K. Iwasawa, Local Class Field Theory, Oxford Sci. Publ., Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, New York, 1986.

  21. Kato S.-I.: A realization of irreducible representations of affine Weyl groups. Nederl. Akad. Wetensch. Indag. Math. 45, 193–201 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kazhdan D, Lusztig G: Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math. 87, 153–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kazhdan D, Nistor V, Schneider P: Hochschild and cyclic homology of finite type algebras. Selecta Math. (N.S.) 4, 321–359 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. R.P. Langlands, Problems in the theory of automorphic forms, In: Lectures in Modern Analysis and Applications. III, Lecture Notes in Math., 170, Springer-Verlag, 1970, pp. 18–61.

  25. Lusztig G.: Some examples of square integrable representations of semisimple p-adic groups. Trans. Amer. Math. Soc. 277, 623–653 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Lusztig G.: Cells in affine Weyl groups. III. J. Fac. Sci. Univ. Tokyo Sect IA Math. 34, 223–243 (1987)

    MathSciNet  MATH  Google Scholar 

  27. Lusztig G.: Cells in affine Weyl groups. IV. J. Fac. Sci. Univ. Tokyo Sect IA Math. 36, 297–328 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Lusztig G.: Representations of affine Hecke algebras. Astérisque. 171-172, 73–84 (1989)

    MathSciNet  Google Scholar 

  29. C.P. Mok, Endoscopic classification of representations of quasi-split unitary groups, preprint, arXiv:1206.0882; Mem. Amer. Math. Soc., to appear.

  30. Reeder M.: Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations. Represent. Theory 6, 101–126 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Renard, Représentations des groupes réductifs p-adiques, Cours Spec., 17, Soc. Math. France, Paris, 2010.

  32. Scholze P.: The local Langlands correspondence for GL n over p-adic fields. Invent. Math. 192, 663–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Solleveld M.: On the classification of irreducible representations of affine Hecke algebras with unequal parameters. Represent. Theory 16, 1–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. D.A. Vogan, Jr., The local Langlands conjecture, In: Representation Theory of Groups and Algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305–379.

  35. Zelevinsky A.V.: Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. 13(4), 165–210 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Baum.

Additional information

Communicated by: Takeshi Saito

This article is based on the 11th Takagi Lectures that the second author delivered at the University of Tokyo on November 17 and 18, 2012.

The second author was partially supported by NSF grant DMS-0701184.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubert, AM., Baum, P., Plymen, R. et al. Geometric structure in smooth dual and local Langlands conjecture. Jpn. J. Math. 9, 99–136 (2014). https://doi.org/10.1007/s11537-014-1267-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-014-1267-x

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation