Skip to main content
Log in

Near-field coupling and SERS effects of palladium nanoparticle dimers

  • Article
  • Optics
  • Published:
Chinese Science Bulletin

Abstract

The linear optical properties and the surface-enhanced Raman scattering (SERS) effect of spherical palladium nanoparticle dimers are analyzed theoretically using generalized Mie theory. The calculation results demonstrate that the near-field coupling effect greatly influences the absorption, scattering and extinction spectra of nanoparticle dimers. The surface plasmon resonance wavelength red-shifts dramatically as the separation between nanoparticles decreases. Because of the near-field coupling between nanoparticles and the size effect, the maximum SERS enhancement factor at the’ hot spot’ between palladium nanoparticle dimers is as high as 107–108, while the averaged SERS enhancement factor over the entire nanoparticle surface is in the range of 105–106. The deviation between the position of the peak in the extinction spectrum and the wavelength for maximum surface-averaged enhancement for the Pd nanoparticle dimers indicates that localized surface plasmon resonance has different influences on the far and near fields. These theoretical results may help to reveal the relationship between the far and near fields, as well as understand the mechanism of electromagnetic enhancement in the surface-enhanced scattering of transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sonnichsen C, Alivisatos A P. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett, 2005, 5: 301–304

    Article  Google Scholar 

  2. Tian Z Q, Ren B, Li J F, et al. Expanding generality of surface- enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commum, 2007, 34: 3514–3534

    Article  Google Scholar 

  3. Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128: 2115–2120

    Article  Google Scholar 

  4. Ferry V E, Sweatlock L A, Pacifici D, et al. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett, 2008, 8: 4391–4397

    Article  Google Scholar 

  5. Sukharev M, Seideman T. Phase and polarization control as a route to plasmonic nanodevices. Nano Lett, 2006, 6: 715–719

    Article  Google Scholar 

  6. Tian Z Q, Ren B, Mao B W. Extending surface Raman spectroscopy to transition metal surfaces for practical applications 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J Phys Chem B, 1997, 101: 1338–1346

    Article  Google Scholar 

  7. Ren B, Lin X F, Yang Z L, et al. Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J Am Chem Soc, 2003, 125: 9598–9599

    Article  Google Scholar 

  8. Wu D Y, Li J F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev, 2008, 37: 1025–1041

    Article  Google Scholar 

  9. Li J F, Yang Z L, Ren B, et al. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: Toward a versatile vibrational strategy for electrochemical interfaces. Langmuir, 2006, 22: 10372–10379

    Article  Google Scholar 

  10. Fan F R, Liu D Y, Wu Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc, 2008, 130: 6949–6951

    Article  Google Scholar 

  11. Tian Z Q, Ren B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu Rev Phys Chem, 2004, 55: 197–299

    Article  Google Scholar 

  12. Liu Z, Yang Z L, Cui L, et al. Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy: Methodology, mechanism and application. J Phys Chem C, 2007, 111: 1770–1775

    Article  Google Scholar 

  13. Cui L, Wang A, Wu D Y, et al. Shaping and shelling Pt and Pd nanoparticles for ultraviolet laser excited surface-enhanced Raman scattering. J Phys Chem C, 2008, 112: 17618–17624

    Article  Google Scholar 

  14. Ren B, Liu G K, Lian X B, et al. Raman spectroscopy on transition metals. Anal Bioanal Chem, 2007, 388: 29–45

    Article  Google Scholar 

  15. Yang Z L, Wu D Y, Yao J L, et al. SERS mechanism of nickel electrode. Chinese Sci Bull, 2002, 47: 1983–1986

    Article  Google Scholar 

  16. Xiong Y, McLellan J M, Chen J, et al. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J Am Chem Soc, 2005, 127: 17118–17127

    Article  Google Scholar 

  17. Yang Z L, Li Y, Li Z P, et al. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles. J Chem Phys, 2009, 130: 234705

    Article  Google Scholar 

  18. Xu H X, Bjerneld E J, Kall M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett, 1999, 83: 4357–4360

    Article  Google Scholar 

  19. Xu H X, Aizpurua J, Kall M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E, 2000, 62: 4318–4324

    Article  Google Scholar 

  20. Moskovits M, Tay L L, Yang J, et al. SERS and the single molecule. Topics Appl Phys, 2002, 82: 215–227

    Article  Google Scholar 

  21. Kneipp K, Kneipp H, Bohr H G. Single-molecule SERS spectroscopy. Topics Appl Phys, 2006, 103: 261–278

    Article  Google Scholar 

  22. Peterson B, Strom S. T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3). Phys Rev D, 1973, 8: 3361–3677

    Article  Google Scholar 

  23. Mackowski D W, Mishchenko M I. Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A, 1996, 13: 2266–2278

    Article  Google Scholar 

  24. Brown R J C, Wang J, Milton M J T. Electromagnetic modeling of Raman enhancement from nanoscale structures as means to predict the efficacy of SERS substrates. J Nanomater, 2007, 1: 12086

    Google Scholar 

  25. Purcell E M, Pennypacker C R. Scattering and absorption of light by nanospherical dielectric grains. Astrophys J, 1973, 186: 705–714

    Article  Google Scholar 

  26. Flatau P J, Fuller K A, Mackowski D W. Scattering by two spheres in contact: Comparisons between discrete-dipole approximation and modal analysis. Appl Opt, 1993, 32: 3302–3305

    Article  Google Scholar 

  27. Yang Z L, Aizpurua J, Xu H X. Electromagnetic field enhancement in TERS configurations. J Raman Spectrosc, 2009, 40: 1343–1348

    Article  Google Scholar 

  28. Taflove A. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston, MA: Artech House, 1995

    Google Scholar 

  29. Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Phys Rev Lett, 1997, 79: 645–648

    Article  Google Scholar 

  30. Videen G, Sun W, Fu Q. Light scattering from irregular tetrahedral aggregates. Opt Commum, 1998, 156: 5–9

    Article  Google Scholar 

  31. Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 2006, 331: 189–193

    Article  Google Scholar 

  32. Mie G. Beitrage zur optik truber medien seziell kolloidaler matallosungen. Ann Phys, 1908, 25: 377–455

    Article  Google Scholar 

  33. Xu H X, Kall M. Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett, 2002, 89: 246802

    Article  Google Scholar 

  34. Comberg U, Wriedt T. Comparison of scattering calculations for aggregated particles based on different models. J Quant Spectrosc Radiat Transfer, 1999, 63: 149–162

    Article  Google Scholar 

  35. Xu H X. A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres. Phys Lett A, 2003, 312: 411–419

    Article  Google Scholar 

  36. Xu H X. Calculation of the near field of aggregates of arbitrary spheres. J Opt Soc Am A, 2004, 21: 804–809

    Article  Google Scholar 

  37. Li Z P, Xu H X. Electromagnetic energy flow near metal nanoparticles-II: Algorithms for the calculation of the light scattering of multi-spheres and photon energy transport via linear chains of Ag nanoparticles. J Quant Spectrosc Radiat Transfer, 2007, 103: 394–401

    Article  Google Scholar 

  38. Fuller K A. Optical resonances and two-sphere systems. Appl Opt, 1991, 30: 4716–4731

    Article  Google Scholar 

  39. Stratton J A. Electromagnetic Theory. New York: McGraw-Hill, 1941

    Google Scholar 

  40. Johnson P B, Christy R W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys Rev B, 1974, 9: 5056–5070

    Article  Google Scholar 

  41. Mock J J, Barbic M, Smith D R, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys, 2002, 116: 6755–6759

    Article  Google Scholar 

  42. Grady N K, Halas N J, Nordlander P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem Phys Lett, 2004, 399: 167–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiLin Yang.

About this article

Cite this article

Ruan, F., Zhang, S., Li, Z. et al. Near-field coupling and SERS effects of palladium nanoparticle dimers. Chin. Sci. Bull. 55, 2930–2936 (2010). https://doi.org/10.1007/s11434-010-4048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4048-9

Keywords

Navigation