Skip to main content
Log in

Ultra-long palladium nanoworms by polymer grafts

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Chemically and morphologically stable, non-aggregating palladium nanoworms with diameters of 2 nm and lengths of up to 10 nm with a graft-to polystyrene shell were synthesized in a straight-forward one-phase system, and proof for the mechanism of formation is presented. The synthesis has been achieved by the application of ω-2,2′-bipyridyl-polystyrene as stabilizer, which led to a “graft-to” structure of palladium nanoworms with polystyrene shell. The nanoworms have been characterized by TEM, XRD, and coupled GPC-UV/Vis measurement. It was possible to show that the formation of nanoworms proceeds by agglomeration of spherical palladium nanoparticles. This mechanism was transferred to ω-thiol-polystyrene as stabilizer, which results in either spherical nanoparticles (low ratio Pd:Polymer, <2 nm diameter) or high aspect ratio nanoworms (high ratio Pd:Polymer, up to 10 × 120 nm), proving that the formation of palladium nanoworms was not exclusive for pyridine/amine-based ligands.

Graphical abstract

In a straight-forward one-phase synthesis, palladium nanoworms with a graft-to polymer shell are synthesized by metal salt reduction. The picture shows a sample of palladium nanoworms with diameter of 10 nm and lengths of up to 120 nm, stabilized by ω-thiol-polystyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  • Bokern S, Getze J, Agarwal S, Greiner A (2011) Polymer grafted silver and copper nanoparticles with exceptional stability against aggregation by a high yield one-pot synthesis. Polymer 52:912–920

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • Evangelisti C, Panziera N, D’Alessio A, Bertinetti L, Botavina M, Vitulli G (2010) New monodispersed palladium nanoparticles by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal 272:246–252

    Article  CAS  Google Scholar 

  • Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231

    Article  CAS  Google Scholar 

  • Henderson IM, Hayward RC (2010) Synthesis of end-functionalized polystyrene by direct nucleophilic addition of polystyryllithium to bipyridine or terpyridine. Macromolecules 43:3249–3255

    Article  CAS  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  • Kharisov BI, Kharissova OV, Jose-Yacaman M (2010) Nanostructures with animal-like shapes. Ind Eng Chem Res 49:8289–8309

    Article  CAS  Google Scholar 

  • Kim SW, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim YW (2003) Synthesis of monodisperse palladium nanoparticles. Nano Lett 3:1289–1291

    Article  CAS  Google Scholar 

  • Kishore S, Nelson JA, Adair JH, Eklund PC (2005) Hydrogen storage in spherical and platelet palladium nonoparticles. J Alloy Compd 389:234–242

    Article  CAS  Google Scholar 

  • Klingelhöfer S, Heitz W, Greiner A, Oestreich S, Förster S, Antonietti M (1997) Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the Heck reaction. J Am Chem Soc 119:10116–10120

    Article  Google Scholar 

  • Kruger C, Agarwal S, Greiner A (2008) Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach. J Am Chem Soc 130:2710–2711

    Article  Google Scholar 

  • Kumar C (2009) Metallic nanomaterials. Wiley VCH, Weinheim

    Google Scholar 

  • Liu L, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  CAS  Google Scholar 

  • Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  • Nakamoto K (1960) Ultraviolet spectra and structures of 2,2′-bipyridine and 2,2′,2″-terpyridine in aqueous solution. J Phys Chem 64:1420–1425

    Article  CAS  Google Scholar 

  • Naoe K, Petit C, Pileni MP (2007) From wormlike to spherical palladium nanocrystals: digestive ripening. J Phys Chem C 111:16249–16254

    Article  CAS  Google Scholar 

  • Naoe K, Petit C, Pileni MP (2008) Use of revers micelles to make either spherical or worm-like palladium nanocrystals: influence of stabilizing agent on nanocrystal shape. Langmuir 24:2792–2798

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  • Ogasawara S, Kato S (2010) Palladium nanoparticles captured in microporous polymers: a tailor-made catalyst for heterogeneous carbon cross-coupling reactions. J Am Chem Soc 132:4608–4613

    Article  CAS  Google Scholar 

  • Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove M-J (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123:7584–7593

    Article  CAS  Google Scholar 

  • Papp S, Dékány I (2006) Nucleation and growth of palladium nanoparticles stabilized by polymers and layer silicates. Colloid Polym Sci 284:1049–1056

    Article  CAS  Google Scholar 

  • Quiros I, Yamada M, Kubo K, Mizutani J, Kurihara M, Nishihara H (2002) Preparation of alkanothiolate-protected palladium nanoparticles and their size dependence on synthetic conditions. Langmuir 18:1413–1418

    Article  CAS  Google Scholar 

  • Semagina N, Joannet E, Parra S, Sulman E, Renken A, Kiwi-Minsker L (2005) Palladium nanoparticles stabilized in block-copolymer micelles for highly selective 2-butyne-1,4-diol partial hydrogenation. Appl Catal A Gen 280:141–147

    Article  CAS  Google Scholar 

  • Song Y, Sun Q, Zhang T, Jin P, Han L (2010) Synthesis of worm and chain-like nanoparticles by a microfluidic reactor process. J Nanopart Res 12:2689–2697

    Article  CAS  Google Scholar 

  • Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M, Lin C-AJ, Chang WH, Braun D, Parak WJ (2007) Size determination of (bio)conjugated water-soluble colloidal nanoparticles: a comparision of different techniques. J Phys Chem C 111:11552–11559

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Tamura M, Fujihara H (2003) Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. J Am Chem Soc 125:15742–15743

    Article  CAS  Google Scholar 

  • Vogt AP, Sumerlin BS (2006) An efficient route to macromonomers via ATRP and click chemistry. Macromolecules 39:5286–5292

    Article  CAS  Google Scholar 

  • Yang ZL, Li Y, Li ZP, Wu DY, Kang JY, Xu HX, Sun MT (2009) Surface enhanced Raman scattering of pyridine adsorbed an AU&Pd core/shell nanoparticles. J Chem Phys 130:234705

    Article  Google Scholar 

  • Yu J, Liu RYF, Poon B, Nazarenko S, Koloski T, Vargo T, Hiltner A, Baer E (2004) Polymers with palladium nanoparticles as active membrane materials. J Appl Polym Sci 92:749–756

    Article  CAS  Google Scholar 

  • Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. A. Schaper and Michael Hellwig of the Center for Materials Science Marburg for technical support for TEM measurements and DFG, Germany for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Greiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokern, S., Volz, K., Agarwal, S. et al. Ultra-long palladium nanoworms by polymer grafts. J Nanopart Res 14, 1041 (2012). https://doi.org/10.1007/s11051-012-1041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1041-z

Keywords

Navigation