Skip to main content
Log in

New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Spermatogenesis is a complicated and highly ordered process which begins with the differentiation of spermatogonial stem cells and ends with the formation of mature sperm. After meiosis, several morphological changes occur during spermatogenesis. During spermatogenesis, many proteins and organelles are degraded, and the ubiquitin–proteasome pathway (UPP) plays a key role in the process which facilitates the formation of condensed sperm. UPP contains various indispensable components: ubiquitin, ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin ligase enzyme E3 and proteasomes. At some key stages of spermatogenesis, such as meiosis, acrosome biogenesis, and spermatozoa maturation, the ubiquitin-related components (including deubiquitination enzymes) exert positive and active functions. Generally speaking, deficient UPP will block spermatogenesis which may induce infertility at various degrees. Although ubiquitination during spermatogenesis has been widely investigated, further detailed aspects such as the mechanism of ubiquitination during the formation of midpiece and acrosome morphogenesis still remains unknown. The present review will overview current progress on ubiquitination during spermatogenesis, and will provide some suggestions for future studies on the functions of UPP components during spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  2. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695(1–3):55–72

    Article  PubMed  CAS  Google Scholar 

  3. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258(13):8206–8214

    PubMed  CAS  Google Scholar 

  4. Schlesinger DH, Goldstein G, Niall HD (1975) The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry 14(10):2214–2218

    Article  PubMed  CAS  Google Scholar 

  5. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458(7237):422–429

    Article  PubMed  CAS  Google Scholar 

  6. Hochstrasser M (2000) Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2:E153–E157

    Article  PubMed  CAS  Google Scholar 

  7. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    PubMed  CAS  Google Scholar 

  8. Livnat-Levanon N, Glickman MH (2010) Ubiquitin-proteasome system and mitochondria—reciprocity. Biochim Biophys Acta 1809(2):80–87

    PubMed  Google Scholar 

  9. Hilt W, Wolf DH (2004) The ubiquitin-proteasome system: past, present and future. Cell Mol Life Sci 61(13):1545

    Article  PubMed  CAS  Google Scholar 

  10. Varshavsky A (1997) The ubiquitin system. Trends Biochem Sci 22:383–387

    Article  PubMed  CAS  Google Scholar 

  11. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  PubMed  CAS  Google Scholar 

  12. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  PubMed  CAS  Google Scholar 

  13. Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, Chen H, De Camilli P, Di Fiore PP (2002) A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416:451–455

    Article  PubMed  CAS  Google Scholar 

  14. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    Article  PubMed  CAS  Google Scholar 

  15. Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 73(4):364–408

    Article  PubMed  CAS  Google Scholar 

  16. Pickart C (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  17. Sutovsky P (2003) Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 61:88–102

    Article  PubMed  CAS  Google Scholar 

  18. Hess RA, Renato de Franca L (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    Article  PubMed  Google Scholar 

  19. Fawcett DW (1970) A comparative view of sperm ultrastructure. Biol Reprod Suppl 2:90–127

    Article  PubMed  CAS  Google Scholar 

  20. Hecht NB (1995) The making of a spermatozoon: a molecular perspective. Dev Genet 16:95–103

    Article  PubMed  CAS  Google Scholar 

  21. Kaya M, Harrison RG (1976) The ultrastructural relationships between Sertoli cells and spermatogenic cells in the rat. J Anat 121:279–290

    PubMed  CAS  Google Scholar 

  22. Ma T, Keller JA, Yu X (2011) RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai) 43(5):339–345

    Article  CAS  Google Scholar 

  23. Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML (1998) Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 273(21):13165–13169

    Article  PubMed  CAS  Google Scholar 

  24. Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA (1999) Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207(2):322–333

    Article  PubMed  CAS  Google Scholar 

  25. Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Hoshi K, Yokota S (2004) Ubiquitin signals in the developing acrosome during spermatogenesis of rat testis: an immunoelectron microscopic study. J Histochem Cytochem 52(11):1393–1403

    Article  PubMed  CAS  Google Scholar 

  26. Henson JH, Cole DG, Roesener CD, Capuano S, Mendola RJ, Scholey JM (1997) The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. Cell Motil Cytoskeleton 38(1):29–37

    Article  PubMed  CAS  Google Scholar 

  27. Bebington C, Doherty FJ, Fleming SD (2001) The possible biological and reproductive functions of ubiquitin. Hum Reprod Update 7(1):102–111

    Article  PubMed  CAS  Google Scholar 

  28. Rajapurohitam V, Bedard N, Wing SS (2002) Control of ubiquitination of proteins in rat tissues by ubiquitin conjugating enzymes and isopeptidases. Am J Physiol Endocrinol Metab 282(4):E739–E745

    PubMed  CAS  Google Scholar 

  29. Rajapurohitam V, Morales CR, El-Alfy M, Lefrançois S, Bedard N, Wing SS (1999) Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev Biol 212(1):217–228

    Article  PubMed  CAS  Google Scholar 

  30. Rajender S, Rahul P, Mahdi AA (2010) Mitochondria, spermatogenesis and male infertility. Mitochondrion 10(5):419–428

    Article  PubMed  CAS  Google Scholar 

  31. De Martino C, Floridi A, Marcante ML, Malorni W, Scorza Barcellona P, Bellocci M, Silvestrini B (1979) Morphological, histochemical and biochemical studies on germ cell mitochondria of normal rats. Cell Tissue Res 196:1–22

    Article  PubMed  Google Scholar 

  32. Fisk HA, Yaffe MP (1999) A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J Cell Biol 145(6):1199–1208

    Article  PubMed  CAS  Google Scholar 

  33. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161

    Article  PubMed  CAS  Google Scholar 

  34. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166

    Article  PubMed  CAS  Google Scholar 

  35. Riparbelli MG, Callaini G (2007) The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Dev Biol 303(1):108–120

    Article  PubMed  CAS  Google Scholar 

  36. Bahr GF, Engler WF (1970) Considerations of volume, mass, DNA, and arrangement of mitochondria in the midpiece of bull spermatozoa. Exp Cell Res 60(3):338–340

    Article  PubMed  CAS  Google Scholar 

  37. Spiropoulos J, Turnbull DM, Chinnery PF (2002) Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod 8:719–721

    Article  PubMed  CAS  Google Scholar 

  38. Cummins J (1998) Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172–182

    Article  PubMed  CAS  Google Scholar 

  39. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83(1):52–62

    Article  PubMed  CAS  Google Scholar 

  40. Amaral A, Ramalho-Santos J, St John JC (2007) The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum Reprod 22(6):1585–1596

    Article  PubMed  CAS  Google Scholar 

  41. Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 107(11):5018–5023

    Article  PubMed  CAS  Google Scholar 

  42. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H, Inatome R, Yanagi S (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25(15):3618–3626

    Article  PubMed  CAS  Google Scholar 

  43. Yonashiro R, Sugiura A, Miyachi M, Fukuda T, Matsushita N, Inatome R, Ogata Y, Suzuki T, Dohmae N, Yanagi S (2009) Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. Mol Biol Cell 20(21):4524–4530

    Article  PubMed  CAS  Google Scholar 

  44. Choongkittaworn NM, Kim KH, Danner DB, Griswold MD (1993) Expression of prohibitin in rat seminiferous epithelium. Biol Reprod 49(2):300–310

    Article  PubMed  CAS  Google Scholar 

  45. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63(2):582–590

    Article  PubMed  CAS  Google Scholar 

  46. Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69(1):254–260

    Article  PubMed  CAS  Google Scholar 

  47. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7(10):1019–1022

    Article  PubMed  CAS  Google Scholar 

  48. Park YY, Lee S, Karbowski M, Neutzner A, Youle RJ, Cho H (2010) Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci 123(Pt 4):619–626

    Article  PubMed  CAS  Google Scholar 

  49. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402(6760):371–372

    Article  PubMed  CAS  Google Scholar 

  50. Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Schatten G (2001) A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci 114(Pt 9):1665–1675

    PubMed  CAS  Google Scholar 

  51. Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144:883–889

    Article  PubMed  CAS  Google Scholar 

  52. Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69(5):1719–1729

    Article  PubMed  CAS  Google Scholar 

  53. Mori K, Kato H (2002) A putative nuclear receptor coactivator (TMF/ARA160) associates with hbrm/hSNF2 alpha and BRG-1/hSNF2 beta and localizes in the Golgi apparatus. FEBS Lett 520:127–132

    Article  PubMed  CAS  Google Scholar 

  54. Abrham G, Volpe M, Shpungin S, Nir U (2009) TMF/ARA160 downregulates proangiogenic genes and attenuates the progression of PC3 xenografts. Int J Cancer 125(1):43–53

    Article  PubMed  CAS  Google Scholar 

  55. Perry E, Tsruya R, Levitsky P, Pomp O, Taller M, Weisberg S, Parris W, Kulkarni S, Malovani H, Pawson T, Shpungin S, Nir U (2004) TMF/ARA160 is a BC-box-containing protein that mediates the degradation of Stat3. Oncogene 23:8908–8919

    Article  PubMed  CAS  Google Scholar 

  56. Lerer-Goldshtein T, Bel S, Shpungin S, Pery E, Motro B, Goldstein RS, Bar-Sheshet SI, Breitbart H, Nir U (2010) TMF/ARA160: a key regulator of sperm development. Dev Biol 348(1):12–21

    Article  PubMed  CAS  Google Scholar 

  57. Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, Fukuda H, Yamashina S, Hirata Y, Hirose S (2007) MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids. J Biol Chem 282(34):24806–24815

    Article  PubMed  CAS  Google Scholar 

  58. Yogo K, Tojima H, Ohno JY, Ogawa T, Nakamura N, Hirose S, Takeya T, Kohsaka T (2012) Identification of SAMT family proteins as substrates of MARCH11 in mouse spermatids. Histochem Cell Biol 137(1):53–65

    Article  PubMed  CAS  Google Scholar 

  59. Agell N, Chiva M, Mezquita C (1983) Changes in nuclear content of protein conjugate histone H2A-ubiquitin during rooster spermatogenesis. FEBS Lett 155(2):209–212

    Article  PubMed  CAS  Google Scholar 

  60. An JY, Kim EA, Jiang Y, Zakrzewska A, Kim DE, Lee MJ, Mook-Jung I, Zhang Y, Kwon YT (2010) UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci USA 107(5):1912–1917

    Article  PubMed  CAS  Google Scholar 

  61. Liu Z, Oughtred R, Wing SS (2005) Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol 25(7):2819–2831

    Article  PubMed  CAS  Google Scholar 

  62. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  PubMed  CAS  Google Scholar 

  63. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2(3):169–178

    Article  PubMed  CAS  Google Scholar 

  64. Pintard L, Willems A, Peter M (2004) Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 23(8):1681–1687

    Article  PubMed  CAS  Google Scholar 

  65. Jentsch S (1992) The ubiquitin-conjugation system. Annu Rev Genet 26:179–207

    Article  PubMed  CAS  Google Scholar 

  66. Dou T, Gu S, Liu J, Chen F, Zeng L, Guo L, Xie Y, Mao Y (2005) Isolation and characterization of ubiquitin-activating enzyme E1-domain containing 1, UBE1DC1. Mol Biol Rep 32(4):265–271

    Article  PubMed  CAS  Google Scholar 

  67. Mazeyrat S, Saut N, Grigoriev V, Mahadevaiah SK, Ojarikre OA, Rattigan A, Bishop C, Eicher EM, Mitchell MJ, Burgoyne PS (2001) A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis. Nat Genet 29(1):49–53

    Article  PubMed  CAS  Google Scholar 

  68. Du Y, Liu ML, Jia MC (2008) Identification and characterization of a spermatogenesis-related gene Ube1 in rat testis. Sheng Li Xue Bao 60(3):382–390

    PubMed  CAS  Google Scholar 

  69. Pelzer C, Kassner I, Matentzoglu K, Singh RK, Wollscheid HP, Scheffner M, Schmidtke G, Groettrup M (2007) UBE1L2, a novel E1 enzyme specific for ubiquitin. J Biol Chem 282:23010–23014

    Article  PubMed  CAS  Google Scholar 

  70. Wing SS, Bedard N, Morales C, Hingamp P, Trasler J (1996) A novel rat homologue of the S. Cerevisiae ubiquitin conjugating enzyme UBC4 with distinct biochemical features is induced during spermatogenesis. Mol Cell Biol 16:4064–4072

    PubMed  CAS  Google Scholar 

  71. Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC, Radding CM, Golub EI (1996) Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci 93(7):2958–2963

    Article  PubMed  CAS  Google Scholar 

  72. Prakash L (1974) Lack of chemically induced mutation in repair-deficient mutants of yeast. Genetics 78(4):1101–1118

    PubMed  CAS  Google Scholar 

  73. Koken MH, Hoogerbrugge JW, Jasper-Dekker I, de Wit J, Willemsen R, Roest HP, Grootegoed JA, Hoeijmakers JH (1996) Expression of the ubiquitin-conjugating DNA repair enzymes HHR6A and B suggests a role in spermatogenesis and chromatin modification. Dev Biol 173:119–132

    Article  PubMed  CAS  Google Scholar 

  74. Pati D, Meistrich ML, Plon SE (1999) Human Cdc34 and Rad6B ubiquitin-conjugating enzymes target repressors of cyclic AMP-induced transcription for proteolysis. Mol Cell Biol 19:5001–5013

    PubMed  CAS  Google Scholar 

  75. Wing SS, Jain P (1995) Molecular cloning, expression and characterization of a ubiquitin conjugation enzyme (E2(17)kB) highly expressed in rat testis. Biochem J 305:125–132

    PubMed  CAS  Google Scholar 

  76. Grootegoed JA, Siep M, Baarends WM (2000) Molecular and cellular mechanisms in spermatogenesis. Baillieres Best Pract Res Clin Endocrinol Metab 14:331–343

    Article  PubMed  CAS  Google Scholar 

  77. Baarends WM, van der Laan R, Grootegoed JA (2000) Specific aspects of the ubiquitin system in spermatogenesis. J Endocrinol Invest 23:597–604

    PubMed  CAS  Google Scholar 

  78. Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MH, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86(5):799–810

    Article  PubMed  CAS  Google Scholar 

  79. Yokota N, Harada Y, Sawada H (2010) Identification of testis-specific ubiquitin-conjugating enzyme in the ascidian Ciona intestinalis. Mol Reprod Dev 77(7):640–647

    Article  PubMed  CAS  Google Scholar 

  80. Rivkin E, Kierszenbaum AL, Gil M, Tres LL (2009) Rnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, tether to the acrosome membranes and the head-tail coupling apparatus during rat spermatid development. Dev Dyn 238(7):1851–1861

    Article  PubMed  CAS  Google Scholar 

  81. Nian H, Zhang W, Shi H, Zhao Q, Xie Q, Liao S, Zhang Y, Zhang Z, Wang C, Han C (2008) Mouse RING finger protein Rnf133 is a testis-specific endoplasmic reticulum-associated E3 ubiquitin ligase. Cell Res 18(7):800–802

    Article  PubMed  CAS  Google Scholar 

  82. Nian H, Fan C, Liao S, Shi Y, Zhang K, Liu Y, Han C (2007) RNF151, a testis-specific RING finger protein, interacts with dysbindin. Arch Biochem Biophys 465(1):157–163

    Article  PubMed  CAS  Google Scholar 

  83. Ogawa M, Mizugishi K, Ishiguro A, Koyabu Y, Imai Y, Takahashi R, Mikoshiba K, Aruga J (2008) Rines/RNF180, a novel RING finger gene-encoded product, is a membrane-bound ubiquitin ligase. Genes Cells 13(4):397–409

    Article  PubMed  CAS  Google Scholar 

  84. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X (2010) RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 18(3):371–384

    Article  PubMed  CAS  Google Scholar 

  85. Liu YQ, Bai G, Zhang H, Su D, Tao DC, Yang Y, Ma YX, Zhang SZ (2010) Human RING finger protein ZNF645 is a novel testis-specific E3 ubiquitin ligase. Asian J Androl 12(5):658–666

    Article  PubMed  CAS  Google Scholar 

  86. Nishito Y, Hasegawa M, Inohara N, Núñez G (2006) MEX is a testis-specific E3 ubiquitin ligase that promotes death receptor-induced apoptosis. Biochem J 396(3):411–417

    Article  PubMed  CAS  Google Scholar 

  87. Kanarek N, Horwitz E, Mayan I, Leshets M, Cojocaru G, Davis M, Tsuberi BZ, Pikarsky E, Pagano M, Ben-Neriah Y (2010) Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCF{beta}-TrCP by single substrate depletion. Genes Dev 24(5):470–477

    Article  PubMed  CAS  Google Scholar 

  88. Rodriguez CI, Stewart CL (2007) Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev Biol 312(2):501–508

    Article  PubMed  CAS  Google Scholar 

  89. Arama E, Bader M, Rieckhof GE, Steller H (2007) A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol 5(10):e251

    Article  PubMed  CAS  Google Scholar 

  90. Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22(3):383–394

    Article  PubMed  CAS  Google Scholar 

  91. Kopanja D, Roy N, Stoyanova T, Hess RA, Bagchi S, Raychaudhuri P (2011) Cul4A is essential for spermatogenesis and male fertility. Dev Biol 352(2):278–287

    Article  PubMed  CAS  Google Scholar 

  92. Yin Y, Lin C, Kim ST, Roig I, Chen H, Liu L, Veith GM, Jin RU, Keeney S, Jasin M, Moley K, Zhou P, Ma L (2011) The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. Dev Biol 356(1):51–62

    Article  PubMed  CAS  Google Scholar 

  93. Oughtred R, Bedard N, Adegoke OA, Morales CR, Trasler J, Rajapurohitam V, Wing SS (2002) Characterization of rat100, a 300-kilodalton ubiquitin-protein ligase induced in germ cells of the rat testis and similar to the Drosophila hyperplastic discs gene. Endocrinology 143(10):3740–3747

    Article  PubMed  CAS  Google Scholar 

  94. Nathan JA, Lehner PJ (2009) The trafficking and regulation of membrane receptors by the RING-CH ubiquitin E3 ligases. Exp Cell Res 315(9):1593–1600

    Article  PubMed  CAS  Google Scholar 

  95. Iyengar PV, Hirota T, Hirose S, Nakamura N (2011) Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem 286(45):39082–39090

    Article  PubMed  CAS  Google Scholar 

  96. Liu Z, Miao D, Xia Q, Hermo L, Wing SS (2007) Regulated expression of the ubiquitin protein ligase, E3(Histone)/LASU1/Mule/ARF-BP1/HUWE1, during spermatogenesis. Dev Dyn 236(10):2889–2898

    Article  PubMed  CAS  Google Scholar 

  97. Dickins RA, Frew IJ, House CM, O’Bryan MK, Holloway AJ, Haviv I, Traficante N, de Kretser DM, Bowtell DD (2002) The ubiquitin ligase component Siah1a is required for completion of meiosis I in male mice. Mol Cell Biol 22(7):2294–2303

    Article  PubMed  CAS  Google Scholar 

  98. Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP (2006) Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 26(8):2999–3007

    Article  PubMed  CAS  Google Scholar 

  99. Kierszenbaum AL, Gil M, Rivkin E, Tres LL (2002) Ran, a GTP-binding protein involved in nucleocytoplasmic transport and microtubule nucleation, relocates from the manchette to the centrosome region during rat spermiogenesis. Mol Reprod Dev 63(1):131–140

    Article  PubMed  CAS  Google Scholar 

  100. Cobellis G, Meccariello R, Pierantoni R, Fasano S (2003) Intratesticular signals for progression of germ cell stages in vertebrates. Gen Comp Endocrinol 134(3):220–228

    Article  PubMed  CAS  Google Scholar 

  101. Paduch DA, Mielnik A, Schlegel PN (2005) Novel mutations in testis-specific ubiquitin protease 26 gene may cause male infertility and hypogonadism. Reprod Biomed Online 10(6):747–754

    Article  PubMed  Google Scholar 

  102. Stouffs K, Lissens W, Tournaye H, Van Steirteghem A, Liebaers I (2005) Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet 13(3):336–340

    Article  PubMed  CAS  Google Scholar 

  103. Crimmins S, Sutovsky M, Chen PC, Huffman A, Wheeler C, Swing DA, Roth K, Wilson J, Sutovsky P, Wilson S (2009) Transgenic rescue of ataxia mice reveals a male-specific sterility defect. Dev Biol 325(1):33–42

    Article  PubMed  CAS  Google Scholar 

  104. Kim YK, Kim YS, Yoo KJ, Lee HJ, Lee DR, Yeo CY, Baek KH (2007) The expression of Usp42 during embryogenesis and spermatogenesis in mouse. Gene Expr Patterns 7(1–2):143–148

    Article  PubMed  CAS  Google Scholar 

  105. Sun C, Skaletsky H, Birren B, Devon K, Tang Z, Silber S, Oates R, Page DC (1999) An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet 23(4):429–432

    Article  PubMed  CAS  Google Scholar 

  106. Luddi A, Margollicci M, Gambera L, Serafini F, Cioni M, De Leo V, Balestri P, Piomboni P (2009) Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med 360(9):881–885

    Article  PubMed  CAS  Google Scholar 

  107. Chianese R, Scarpa D, Berruti G, Cobellis G, Pierantoni R, Fasano S, Meccariello R (2009) Expression and localization of the deubiquitinating enzyme mUBPy in wobbler mouse testis during spermiogenesis. Gen Comp Endocrinol 166(2):289–295

    Article  PubMed  CAS  Google Scholar 

  108. Berruti G, Ripolone M, Ceriani M (2010) USP8, a regulator of endosomal sorting, is involved in mouse acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Biol Reprod 82(5):930–939

    Article  PubMed  CAS  Google Scholar 

  109. Berruti G, Martegani E (2004) The deubiquitinating enzyme mUBPy interacts with the sperm-specific molecular chaperone MSJ-1: the relation with the proteasome, acrosome, and centrosome in mouse male germ cells. Biol Reprod 72(1):14–21

    Article  PubMed  CAS  Google Scholar 

  110. Osawa Y, Wang YL, Osaka H, Aoki S, Wada K (2001) Cloning, expression, and mapping of a mouse gene, Uchl4, highly homologous to human and mouse Uchl3. Biochem Biophys Res Commun 283:627–633

    Article  PubMed  CAS  Google Scholar 

  111. Kwon J, Wang YL, Setsuie R, Sekiguchi S, Sakurai M, Sato Y, Lee WW, Ishii Y, Kyuwa S, Noda M, Wada K, Yoshikawa Y (2004) Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice. Biol Reprod 71(2):515–521

    Article  PubMed  CAS  Google Scholar 

  112. Kurihara LJ, Kikuchi T, Wada K, Tilghman SM (2001) Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum Mol Genet 10:1963–1970

    Article  PubMed  CAS  Google Scholar 

  113. Sekiguchi S, Takatori A, Negishi T, Kwon J, Kokubo T, Ishii Y, Kyuwa S, Yoshikawa Y (2005) Localization of ubiquitin carboxyl-terminal hydrolase-L1 in cynomolgus monkey placentas. Placenta 26(1):99–103

    Article  PubMed  CAS  Google Scholar 

  114. Martín R, Santamaría L, Fraile B, Paniagua R, Polak JM (1995) Ultrastructural localization of PGP 9.5 and ubiquitin immunoreactivities in rat ductus epididymidis epithelium. Histochem J 27(6):431–439

    PubMed  Google Scholar 

  115. Sun J, Shang X, Tian Y, Zhao W, He Y, Chen K, Cheng H, Zhou R (2008) Ubiquitin C-terminal hydrolase-L1 (Uch-L1) correlates with gonadal transformation in the rice field eel. FEBS J 275(2):242–249

    Article  PubMed  CAS  Google Scholar 

  116. Mochida K, Ohkubo N, Matsubara T, Ito K, Kakuno A, Fujii K, Aquat Toxicol (2004) Effects of endocrine-disrupting chemicals on expression of ubiquitin C-terminal hydrolase mRNA in testis and brain of the Japanese common goby. Aquat Toxicol 70(2):123–136

    Article  PubMed  CAS  Google Scholar 

  117. Mochida K, Matsubara T, Kudo H, Andoh T, Ueda H, Adachi S, Yamauchi K (2002) Molecular cloning and immunohistochemical localization of ubiquitin C-Terminal hydrolase expressed in testis of a teleost, the Nile Tilapia, Oreochromis niloticus. J Exp Zool 293(4):368–383

    Article  PubMed  CAS  Google Scholar 

  118. Kwon J, Kikuchi T, Setsuie R, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice. Exp Anim 52(1):1–9

    Article  PubMed  CAS  Google Scholar 

  119. Kon Y, Endoh D, Iwanaga T (1999) Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in Sertoli cells of mouse testis. Mol Reprod Dev 54(4):333–341

    Article  PubMed  CAS  Google Scholar 

  120. Fraile B, Martin R, De Miguel MP, Arenas MI, Bethencourt FR, Peinado F, Paniagua R, Santamaria L (1996) Light and electron microscopic immunohistochemical localization of protein gene product 9.5 and ubiquitin immunoreactivities in the human epididymis and vas deferens. Biol Reprod 55(2):291–297

    Article  PubMed  CAS  Google Scholar 

  121. Kwon J, Mochida K, Wang YL, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K (2005) Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod 73(1):29–35

    Article  PubMed  CAS  Google Scholar 

  122. Kwon J, Sekiguchi S, Wang YL, Setsuie R, Yoshikawa Y, Wada K (2006) The region-specific functions of two ubiquitin C-terminal hydrolase isozymes along the epididymis. Exp Anim 55(1):35–43

    Article  PubMed  CAS  Google Scholar 

  123. Wang YL, Liu W, Sun YJ, Kwon J, Setsuie R, Osaka H, Noda M, Aoki S, Yoshikawa Y, Wada K (2006) Overexpression of ubiquitin carboxyl-terminal hydrolase L1 arrests spermatogenesis in transgenic mice. Mol Reprod Dev 73(1):40–49

    Article  PubMed  CAS  Google Scholar 

  124. Kurihara LJ, Semenova E, Levorse JM, Tilghman SM (2000) Expression and functional analysis of Uch-L3 during mouse development. Mol Cell Biol 20(7):2498–2504

    Article  PubMed  CAS  Google Scholar 

  125. Day IN, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90(3):327–362

    Article  PubMed  CAS  Google Scholar 

  126. Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang M, Sun SC (2007) Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell 13(5):705–716

    Article  PubMed  CAS  Google Scholar 

  127. Kierszenbaum AL, Rivkin E, Tres LL (2003) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14(11):4628–4640

    Article  PubMed  CAS  Google Scholar 

  128. Sironen A, Uimari P, Nagy S, Paku S, Andersson M, Vilkki J (2010) Knobbed acrosome defect is associated with a region containing the genes STK17b and HECW2 on porcine chromosome 15. BMC Genomics 11:699

    Article  PubMed  CAS  Google Scholar 

  129. Sutovsky P, Terada Y, Schatten G (2001) Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Hum Reprod 16:250–258

    Article  PubMed  CAS  Google Scholar 

  130. Sutovsky P, Neuber E, Schatten G (2002) Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Mol Reprod Dev 61:406–413

    Article  PubMed  CAS  Google Scholar 

  131. Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, Yi YJ, Sutovsky P (2008) Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol 215(3):684–696

    Article  PubMed  CAS  Google Scholar 

  132. Ozanon C, Chouteau J, Sutovsky P (2005) Clinical adaptation of the sperm tag immunoassay (SUTI): relationship of sperm ubiquitylation with sperm quality in gradient-purified semen samples from 93 men from a general infertility clinic population. Hum Reprod 20:2271–2278

    Article  PubMed  CAS  Google Scholar 

  133. Sutovsky P, Turner RM, Hameed S, Sutovsky M (2003) Differential ubiquitination of stallion sperm proteins: possible implications for infertility and reproductive seasonality. Biol Reprod 68:688–698

    Article  PubMed  CAS  Google Scholar 

  134. Kuster CE, Hess RA, Althouse GC (2004) Immunofluorescence reveals ubiquitination of retained distal cytoplasmic droplets on ejaculated porcine spermatozoa. J Androl 25:340–347

    PubMed  Google Scholar 

  135. Lovercamp KW, Safranski TJ, Fischer KA, Manandhar G, Sutovsky M, Herring W, Sutovsky P (2007) Arachidonate 15-lipoxygenase and ubiquitin as fertility markers in boars. Theriogenology 67:704–718

    Article  PubMed  CAS  Google Scholar 

  136. Muratori M, Marchiani S, Forti G, Baldi E (2005) Sperm ubiquitination positively correlates to normal morphology in human semen. Hum Reprod 20(4):1035–1043

    Article  PubMed  CAS  Google Scholar 

  137. Mishra A, Jana NR (2008) Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cell Mol Life Sci 65(4):656–666

    Article  PubMed  CAS  Google Scholar 

  138. Cheng Y, Li G (2011) Role of the ubiquitin ligase Fbw7 in cancer progression. Cancer Metastasis Rev. doi:10.1007/s10555-011-9330-z

    Google Scholar 

  139. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  PubMed  CAS  Google Scholar 

  140. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8:83–93

    Article  PubMed  CAS  Google Scholar 

  141. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381

    Article  PubMed  CAS  Google Scholar 

  142. Nateri AS, Riera-Sans L, Da Costa C, Behrens A (2004) The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303:1374–1378

    Article  PubMed  CAS  Google Scholar 

  143. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294:173–177

    Article  PubMed  CAS  Google Scholar 

  144. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101:9085–9090

    Article  PubMed  CAS  Google Scholar 

  145. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr (2005) The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8:25–33

    Article  PubMed  CAS  Google Scholar 

  146. Ishikawa Y, Onoyama I, Nakayama KI, Nakayama K (2008) Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7. Oncogene 27:6164–6174

    Article  PubMed  CAS  Google Scholar 

  147. Zhao D, Zheng HQ, Zhou Z, Chen C (2010) The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res 70:4728–4738

    Article  PubMed  CAS  Google Scholar 

  148. Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476

    Article  PubMed  CAS  Google Scholar 

  149. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    Article  PubMed  CAS  Google Scholar 

  150. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  PubMed  CAS  Google Scholar 

  151. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  152. Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23(21):4776–4789

    Article  PubMed  CAS  Google Scholar 

  153. Jääskeläinen T, Makkonen H, Visakorpi T, Kim J, Roeder RG, Palvimo JJ (2012) Histone H2B ubiquitin ligases RNF20 and RNF40 in androgen signaling and prostate cancer cell growth. Mol Cell Endocrinol 350(1):87–98

    Article  PubMed  CAS  Google Scholar 

  154. Gu Z, Rubin MA, Yang Y, Deprimo SE, Zhao H, Horvath S, Brooks JD, Loda M, Reiter RE (2005) Reg IV: a promising marker of hormone refractory metastatic prostate cancer. Clin Cancer Res 11:2237–2243

    Article  PubMed  CAS  Google Scholar 

  155. Subik K, Shu L, Wu C, Liang Q, Hicks D, Boyce B, Schiffhauer L, Chen D, Chen C, Tang P, Xing L (2012) The ubiquitin E3 ligase WWP1 increases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis. Bone 50(4):813–823

    Article  PubMed  CAS  Google Scholar 

  156. Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K (2004) Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23(41):6914–6923

    Article  PubMed  CAS  Google Scholar 

  157. Chen C, Sun X, Guo P, Dong XY, Sethi P, Cheng X, Zhou J, Ling J, Simons JW, Lingrel JB, Dong JT (2005) Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J Biol Chem 280(50):41553–41561

    Article  PubMed  CAS  Google Scholar 

  158. Chen C, Sun X, Guo P, Dong XY, Sethi P, Zhou W, Zhou Z, Petros J, Frierson HF Jr, Vessella RL, Atfi A, Dong JT (2007) Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene 26(16):2386–2394

    Article  PubMed  CAS  Google Scholar 

  159. Crawford LJ, Walker B, Irvine AE (2011) Proteasome inhibitors in cancer therapy. J Cell Commun Signal 5(2):101–110

    Article  PubMed  Google Scholar 

  160. Wing SS, Bédard N, Morales C, Hingamp P, Trasler J (1996) A novel rat homolog of the Saccharomyces cerevisiae ubiquitin-conjugating enzymes UBC4 and UBC5 with distinct biochemical features is induced during spermatogenesis. Mol Cell Biol 16(8):4064–4072

    PubMed  CAS  Google Scholar 

  161. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121(7):1071–1083

    Article  PubMed  CAS  Google Scholar 

  162. Warr MR, Acoca S, Liu Z, Germain M, Watson M, Blanchette M, Wing SS, Shore GC (2005) BH3-ligand regulates access of MCL-1 to its E3 ligase. FEBS Lett 579(25):5603–5608

    Article  PubMed  CAS  Google Scholar 

  163. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 12(7):1085–1095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the Sperm Laboratory at Zhejiang University for their helpful discussion. This project was supported in part by National Natural Science Foundation of China (No. 41276151), National Basic Research Program of China (973 Program, Grant Number: No. 2012CB967902), and National Natural Science Foundation of China (No. 31072198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, CC., Yang, WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 40, 3213–3230 (2013). https://doi.org/10.1007/s11033-012-2397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2397-y

Keywords

Navigation