Skip to main content

Advertisement

Log in

Global biodiversity scenarios and landscape ecology

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The composition of ecological communities is both cause and consequence of landscape pattern. Predicting biodiversity change involves understanding not only ecology and evolution, but also complex changes in human societies and economies. Scenarios offer a less rigid approach to thinking about biodiversity change in a policy and management context. They shift the focus of research and management from making singular predictions and developing single ‘best’ strategies to exploring uncertainties and assessing the outcomes of alternative policies. The four Millennium Ecosystem Assessment (MA) biodiversity scenarios illustrate current approaches to biodiversity estimation in global scenarios. The MA biodiversity scenarios are built around the species–area relationship and the magnitudes of a few area-dependent processes such as nitrogen deposition and climate change. Some of the most obvious landscape-related omissions from the MA scenarios are pattern-process feedbacks, scale dependencies, and the role of landscape configuration. While the MA has set a new standard for biodiversity scenarios, future exercises would benefit from a more multi-scale and more mechanistic framework. I use examples from research on the landscape ecology and biogeography of African ticks to illustrate how a hypothesis-based approach can be used to analyse the multi-scale, multi-level drivers of change in patterns of species occurrences. Two of the most important challenges for the future development of both landscape ecology and biodiversity scenarios are to become more mechanistic (less pattern-based) and more general (applicable across different landscapes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcamo J, Leemans R, Kreileman GJJ (1998) Global change scenarios of the 21st century: results from the IMAGE 2.1 Model. Pergamon and Elsevier Science, London

    Google Scholar 

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 1:267–272

    Article  Google Scholar 

  • Andreassen HP, Ims RA (2001) Dispersal in patchy vole populations: role of patch configuration, density dependence, and demography. Ecology 8:2911–2926

    Article  Google Scholar 

  • Austin, MP (2002) Spatial prediction of species distributions: an interface between ecological theory and statistical modelling. Ecol Model 15:101–118

    Article  Google Scholar 

  • Bennett AF, Hinsley SA, Bellamy PE, Swetnam RD, Mac Nally R (2004) Do regional gradients in land-use influence richness, composition and turnover of bird assemblages in small woods? Biol Conserv 11:191–206

    Article  Google Scholar 

  • Bennett EM, Carpenter SR, Peterson GD, Cumming GS, Zurek M, Pingali P (2003) Why global scenarios need ecology. Frontiers in Ecology and the Environment 1:322–329

    Article  Google Scholar 

  • Bestelmeyer BT, Miller JR, Wiens JA (2003) Applying species diversity theory to land management. Ecol Appl 1:1750–1761

    Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Amer Nat 12:255–279

    Article  Google Scholar 

  • Carpenter SR (2002) Ecological futures: building an ecology of the long now. Ecology 8:2069–2083

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 29:904–907

    Article  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 40:234–242

    Article  Google Scholar 

  • Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke R, Pizer W, Pringle C, Reid WV, Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D (2001) Ecological forecasts: An emerging imperative. Science 29:657–660

    Article  Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 2:252–284

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 19:1302–1310

    Article  Google Scholar 

  • Cumming GS (1998) Host preference in African ticks (Acari: Ixodida): a quantitative data set. Bull Entomol Res 8:379–406

    Google Scholar 

  • Cumming GS (1999a) The evolutionary ecology of African ticks. D.Phil. thesis, Department of Zoology. Oxford, UK: University of Oxford

  • Cumming GS (1999b) Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida). Bull Entomol Res 8:303–327

    Google Scholar 

  • Cumming GS (2000a) Host use does not clarify the evolutionary history of African ticks (Acari: Ixodoidea). Afric Zool 3:43–50

    Google Scholar 

  • Cumming GS (2000b) Using between-model comparisons to fine-tune linear models of species ranges. J Biogeogr 2:441–455

    Article  Google Scholar 

  • Cumming GS (2000c) Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). J Biogeogr 2:425–440

    Article  Google Scholar 

  • Cumming GS (2002) Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 8:255–268

    Article  Google Scholar 

  • Cumming GS, Alcamo J, Sala O, Swart R, Bennett EM, Zurek M, (2005) Are existing global scenarios consistent with ecological feedbacks? Ecosystems 143–152

  • Cumming GS, Guegan JF (2006) Food webs and disease: is pathogen diversity limited by vector diversity? EcoHealth 3:163–170

    Article  Google Scholar 

  • Cumming GS, Peterson GD (2005) Ecology in global scenarios. In: Millennium Ecosystem Assessment, vol 2: Scenarios. Island Press, New York

  • Cumming GS, Van Vuuren DP (2006) Will climate change facilitate ectoparasite invasions? Global Ecol Biogeogr 15:486–497

    Article  Google Scholar 

  • Daily GC, Alexander S, Ehrlich P, Goulder L, Lubchenco J, Matson P, Mooney HA, Postel SL, Schneider SH, Tilman D, Woodwell GM (1997) Ecosystem services: benefits supplied to human societies by ecosystems. In: Issues in ecology: Ecological Society of America

  • Daily GC, Ehrlich PR (1996) Socioeconomic equity, sustainability, Earth’s carrying capacity. Ecol Appl 991–1001

  • Daily GC, Ehrlich PR (1999) Managing earth’s ecosystems: An interdisciplinary challenge. Ecosystems 277–280

  • Dangerfield JM, McCarthy TS, Ellery WN (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J Trop Ecol 1:507–520

    Article  Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JL, Shorrocks B, Wood S, (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 39:783–786

    Article  Google Scholar 

  • Dietz S, Adger WN (2003) Economic growth, biodiversity loss and conservation effort. J Environ Manag 6:23–35

    Google Scholar 

  • Ehrlich PR, Wolff G, Daily GC, Hughes JB, Daily S, Dalton M, Goulder L (1999) Knowledge and the environment. Ecol Econ 3:267–284

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annl Rev Ecol Evol Syst 3:487–515

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environl Conserv 2:38–49

    Article  Google Scholar 

  • Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Amer Nat 15:40–56

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 40:220–227

    Article  Google Scholar 

  • Gaston KJ, Spicer JI (2001) The relationship between range size and niche breadth: a test using five species of Gammarus (Amphipoda). Global Ecol Biogeogr 1:179–188

    Article  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 5:7–26

    Article  Google Scholar 

  • Gu WD, Heikkila R, Hanski I (2002) Estimating the consequences of habitat fragmentation on extinction risk in dynamic landscapes. Landsc Ecol 1:699–710

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Letts 993–1009

  • Herwitz SR, Wunderlin RP, Hansen BP (1996) Species turnover on a protected subtropical barrier island: a long-term study. J Biogeogr 2:705–715

    Google Scholar 

  • Holling CS, Meffe GK (1996) Command and control and the pathology of natural resource management. Conserv Biol 1:328–337

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbour Symp Quant Biol 2:415–427

    Google Scholar 

  • IMAGE-Team (2001) The IMAGE 2.2 implementation of the SRES scenarios. A comprehensive analysis of emissions, climate change and impacts in the 21st century. Main disc. National Institute for Public Health and the Environment, Bilthoven, the Netherlands

  • IPCC (2001) Climate Change 2001: synthesis report. Cambridge University Press, Cambridge

  • Ives AR, Klug JL, Gross K (2000) Stability and species richness in complex communities. Ecol Letts 399–411

  • Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecol Appl 1:1027–1045

    Article  Google Scholar 

  • Jacquemyn H, Butaye J, Hermy M (2003) Influence of environmental and spatial variables on regional distribution of forest plant species in a fragmented and changing landscape. Ecography 2:768–776

    Article  Google Scholar 

  • Levin S (1999) Fragile Dominion: complexity and the commons. Perseus, Cambridge, UK

    Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 8:15–26

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 1:3–13

    Article  Google Scholar 

  • Londt JGH, Whitehead GB (1972) Ecological studies of larval ticks in South Africa (Acarina: Ixodidae). Parasitology 6:469–490

    Article  Google Scholar 

  • Macleod J, Colbo MH, Madbouly MH, Mwanaumo B (1977) Ecological studies of ixodid ticks (Acari: Ixodidae) in Zambia. III, Seasonal activity and attachment sites on cattle, with notes on other hosts. Bull Entomol Res 6:161–173

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press, Cambridge, MA

  • Millennium Ecosystem Assessment. (2005) Volume 2: scenarios. Findings of the scenarios working group. Island Press, New York, 560 pp

  • Minshull JI (1981) Seasonal occurrence, habitat distribution and host range of four ixodid tick species at Kyle recreational park in south eastern Zimbabwe. Zimbabwe Veter J 1:58–63

    Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 8:1537–1552

    Article  Google Scholar 

  • Needham GR, Teal PD (1991) Off-host physiological ecology of ixodid ticks. Annl Rev Entomol 3:659–681

    Article  Google Scholar 

  • Norval RAI, Walker JB, Colborne J (1982) The ecology of Rhipicephalus zambeziensis and Rhipicephalus appendiculatus (Acarina, Ixodidae) with particular reference to Zimbabwe. Onderstepoort J Veter Res 4:181–190

    Google Scholar 

  • O’Brien E, Whittaker RH, Field R (1998) Water-energy dynamics, climate, prediction of woody plant species richness: an interim general model. J Biogeogr 2:379–398

    Article  Google Scholar 

  • Ostfeld RS, Cepeda OM, Hazler KR, Miller MC (1995) Ecology of Lyme-disease—habitat associations of ticks (Ixodes-Scapularis) in a rural landscape. Ecol Appl 353–361

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 1:361–371

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Quart Rev Biol 7:419–433

    Google Scholar 

  • Peterson GD, Beard TD, Beisner BE, Bennett EM, Carpenter SR, Cumming GS, Dent CL, Havlicek TD (2003a) Assessing future ecosystem services: a case study of the Northern Highland Lake District, Wisconsin. Conserv Ecol 7:1, on-line at http://www.consecol.org/vol7/iss3/art1

  • Peterson GD, Cumming GS, Carpenter SR (2003b) Scenario planning: a tool for conservation in an uncertain world. Conserv Biol 17:358–366

    Article  Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Amer Nat 91:33–46

    Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 30:321–326

    Article  Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 40:212–219

    Article  Google Scholar 

  • Radford JQ, Bennett AF (2004) Thresholds in landscape parameters: occurrence of the white-browed treecreeper Climacteris affinis in Victoria, Australia. Biol Conserv 11:375–391

    Article  Google Scholar 

  • Randolph SE (1997) Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipicephalus appendiculatus in South Africa. Med Veter Entomol 1:25–37

    Google Scholar 

  • Randolph SE, Green RM, Hoodless AN, Peacey MF (2002) An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Intl J Parasitol 3:979–989

    Article  Google Scholar 

  • Randolph SE, Rogers DJ (1997) A generic population model for the African tick Rhipicephalus appendiculatus. Parasitology 11:265–279

    Article  Google Scholar 

  • Raskin P (2005) Global Scenarios: Background Review for the Millennium Ecosystem Assessment. Ecosystems 133–142

  • Ray HL, Ray AM, Rebertus AJ (2004) Rapid establishment of fish in isolated peatland beaver ponds. Wetlands 2:399–405

    Article  Google Scholar 

  • Rosenzweig ML (2002) Species diversity in space and time. Cambridge University Press, Cambridge, 436 pp

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity—global biodiversity scenarios for the year (2100). Science 28:1770–1774

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Amer Nat 13:240–256

    Article  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol Appl 1:354–363

    Article  Google Scholar 

  • VanBuskirk J, Ostfeld RS (1998) Habitat heterogeneity, dispersal, and local risk of exposure to Lyme disease. Ecol Appl 365–378

  • van der Heijden K (1996) Scenarios: the art of strategic conversation. John Wiley and Sons, New York, NY

    Google Scholar 

  • Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 3:368–373

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 27:494–499

    Article  Google Scholar 

  • Walker JB, Keirans JE, Horak IG (2000) The genus Rhipicephalus (Acari, Ixodidae): a guide to the Brown Ticks of the World. Cambridge, Cambridge University Press

    Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 3:279–338

    Article  Google Scholar 

  • Whittaker RJ (1995) Disturbed Island Ecology. Trends Ecol Evol 1:421–425

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchial theory of species diversity. J Biogeogr 2:453–470

    Article  Google Scholar 

  • Wilson ML (1998) Distribution and abundance of Ixodes scapularis (Acari: Ixodidae) in North America: ecological processes and spatial analysis. J Med Entomol 3:446–457

    Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Quart Rev Biol 7:439–466

    Google Scholar 

Download references

Acknowledgements

I am grateful to the other participants in the scenarios group of the Millennium Ecosystem Assessment for many fascinating discussions, and in particular to the other members of the biodiversity scenarios subgroup: Osvaldo Sala, Jackie Alder, Andy Dobson, David Lodge, Henrique Pereira, Detlef Van Vuuren, Volkmar Wolters and Maggie Xenopoulos. Detlef Van Vuuren helped to develop global projections of tick species ranges under different climate scenarios. David Cumming, Annette Otte, Janet Franklin, and Andrew Knight provided valuable comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme S. Cumming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumming, G.S. Global biodiversity scenarios and landscape ecology. Landscape Ecol 22, 671–685 (2007). https://doi.org/10.1007/s10980-006-9057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-006-9057-3

Keywords

Navigation