Skip to main content
Log in

A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson’s disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211–235, 2004), was developed. The original Rubin and Terman model was able to reproduce both the physiological and pathological activities of STN, GPi, GPe and thalamo-cortical (TC) relay cells. In the present study, we introduced a representation of the direct pathway of the BGS, allowing a more complete framework to simulate DBS and to interpret its network effects in the BGS. Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Albin, R. L., Young, A. B., & Penney, J. B. (1995). The functional-anatomy of disorders of the basal ganglia. Trends in Neurosciences, 18, 63–64.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89, 1150–1160.

    Article  PubMed  Google Scholar 

  • Anderson, V. C., Burchiel, K. J., Hogarth, P., Favre, J., & Hammerstad, J. P. (2005). Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Archives of Neurology, 62, 554–560.

    Article  PubMed  Google Scholar 

  • Bar-Gad, I., Morris, G., & Bergman, H. (2003). Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71, 439–473.

    Article  PubMed  Google Scholar 

  • Beiser, D. G., Hua, S. E., & Houk, J. C. (1997). Network models of the basal ganglia. Current Opinion in Neurobiology, 7, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Benabid, A. L., Benazzous, A., & Pollak, P. (2002). Mechanisms of deep brain stimulation. Movement Disorders, 17, S73–S74.

    Article  PubMed  Google Scholar 

  • Bergman, H., & Deuschl, G. (2002). Pathophysiology of Parkinson’s disease: From clinical neurology to basic neuroscience and back. Movement Disorders, 17, S28–S40.

    Article  PubMed  Google Scholar 

  • Berns, G. S., & Sejnowski, T. J. (1998). A computational model of how the basal ganglia produce sequences. Journal of Cognitive Neuroscience, 10, 108–121.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. W., Bullock, D., & Grossberg, S. (2004). How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 17, 471–510.

    Article  PubMed  Google Scholar 

  • Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of Neuroscience, 21, 1033–1038.

    PubMed  CAS  Google Scholar 

  • Burchiel, K. J., Anderson, V. C., Favre, J., & Hammerstad, J. P. (1999). Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: Results of a randomized, blinded pilot study. Neurosurgery, 45, 1375–1382.

    Article  PubMed  CAS  Google Scholar 

  • Defebvre, L. J. P., Krystkowiak, P., Blatt, J. L., Duhamel, A., Bourriez, J. L., Perina, M., et al. (2002). Influence of pallidal stimulation and levodopa on gait and preparatory postural adjustments in Parkinson’s disease. Movement Disorders, 17, 76–83.

    Article  PubMed  Google Scholar 

  • Delong, M. R. (1990). Primate models of movement-disorders of basal ganglia origin. Trends in Neurosciences, 13, 281–285.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20–24.

    Article  PubMed  Google Scholar 

  • Dostrovsky, J. O., & Lozano, A. M. (2002). Mechanisms of deep brain stimulation. Movement Disorders, 17, S63–S68.

    Article  PubMed  Google Scholar 

  • Faist, M., Xie, J., Kurz, D., Berger, W., Maurer, C., Pollak, P., & Lucking, C. H. (2001). Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain, 124, 1590–1600.

    Article  PubMed  CAS  Google Scholar 

  • Feng, X. J., Shea-Brown, E., Greenwald, B., Kosut, R., & Rabitz, H. (2007). Optimal deep brain stimulation of the subthalamic nucleus—A computational study. Journal of Computational Neuroscience, 23, 265–282.

    Article  PubMed  Google Scholar 

  • Ferrarin, M., Rizzone, M., Lopiano, L., Recalcati, M., & Pedotti, A. (2004). Effects of subthalamic nucleus stimulation and l-dopa in trunk kinematics of patients with Parkinson’s disease. Gait & Posture, 19, 164–171.

    Article  CAS  Google Scholar 

  • Follett, K., Weaver, F., Stern, M., Marks, W., Hogarth, P., Holloway, K., Bronstein, J., Duda, J., Horn, S., & Lai, E. (2005). Multisite randomized trial of deep brain stimulation. Archives of Neurology, 62, 1643–1644.

    Article  PubMed  Google Scholar 

  • Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916–1923.

    PubMed  CAS  Google Scholar 

  • Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. Journal of Neuroscience, 26, 12921–12942.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., Tachibana, Y., Nambu, A., & Chiken, S. (2005). Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. Journal of Neuroscience, 25, 8611–8619.

    Article  PubMed  CAS  Google Scholar 

  • Krack, P., Pollak, P., Limousin, P., Benazzouz, A., Deuschl, G., & Benabid, A. L. (1999). From off-period dystonia to peak-dose chorea—The clinical spectrum of varying subthalamic nucleus activity. Brain, 122, 1133–1146.

    Article  PubMed  Google Scholar 

  • Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. Journal of Neuroscience, 26, 3567.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M. M., Slagle, C. G., Smith, A. B., Truong, Y., Bai, P., McKeown, M. J., et al. (2007). Task specific influences of Parkinson’s disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neuroscience, 147, 224–235.

    Article  PubMed  CAS  Google Scholar 

  • Lozano, A. M., Dostrovsky, J., Chen, R., & Ashby, P. (2002). Deep brain stimulation for Parkinson’s disease: Disrupting the disruption. Lancet Neurology, 1, 225–231.

    Article  PubMed  Google Scholar 

  • Maurer, C., Mergner, T., Xie, J., Faist, M., Pollak, P., & Lucking, C. H. (2003). Effect of chronic bilateral subthalamic nucleus (STN) stimulation on postural control in Parkinson’s disease. Brain, 126, 1146–1163.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.

    Article  PubMed  Google Scholar 

  • Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery Jr, E. B., & Baker, K. B. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.

    CAS  Google Scholar 

  • Nambu, A. (2004). A new dynamic model of the cortico-basal ganglia loop. Progress in Brain Research, 143, 461–466.

    Article  PubMed  Google Scholar 

  • Ogura, M., & Kita, H. (2000). Dynorphin exerts both postsynaptic and presynaptic effects in the globus pallidus of the rat. Journal of Neurophysiology, 83, 3366–3376.

    PubMed  CAS  Google Scholar 

  • Okun, M. S., & Foote, K. D. (2005). Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch will pallidal deep brain stimulation make a triumphant return? Archives of Neurology, 62, 533–536.

    Article  PubMed  Google Scholar 

  • Ostergaard, K., & Sunde, N. A. (2006). Evolution of Parkinson’s disease during 4 years of bilateral deep brain stimulation of the subthalamic nucleus. Movement Disorders, 21, 624–631.

    Article  PubMed  Google Scholar 

  • Pascual, A., Modolo, J., & Beuter, A. (2006). Is a computational model useful to understand the effect of deep brain stimulation in Parkinson’s disease? Journal of Integrative Neuroscience, 5, 541–559.

    Article  PubMed  Google Scholar 

  • Perlmutter, J. S., & Mink, J. W. (2006). Deep brain stimulation. Annual Review of Neuroscience, 29, 229–257.

    Article  PubMed  CAS  Google Scholar 

  • Plenz, D., & Kitai, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.

    Article  PubMed  CAS  Google Scholar 

  • Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 8559–8571.

    PubMed  CAS  Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem. Neuroscience, 89, 1009–1023.

    Article  PubMed  CAS  Google Scholar 

  • Rizzone, M., Ferrarin, M., Pedotti, A., Bergamasco, B., Bosticco, E., Lanotte, M., et al. (2002). High-frequency electrical stimulation of the subthalamic nucleus in Parkinson’s disease: Kinetic and kinematic gait analysis. Neurological Sciences, 23, S103–S104.

    Article  PubMed  Google Scholar 

  • Rocchi, L., Chiari, L., Cappello, A., Gross, A., & Horak, F. B. (2004). Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson’s disease. Gait & Posture, 19, 172–183.

    Article  Google Scholar 

  • Rocchi, L., Chiari, L., & Horak, F. B. (2002). Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 73, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J. L., Pollak, P., Rehncrona, S., et al. (2005). Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up. Brain, 128, 2240–2249.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.

    Article  PubMed  Google Scholar 

  • Stanford, I. M., & Cooper, A. J. (1999). Presynaptic μ and δ opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. Journal of Neuroscience, 19, 4796–4803.

    PubMed  CAS  Google Scholar 

  • Stefani, A., Fedele, E., Galati, S., Pepicelli, O., Frasca, S., Pierantozzi, M., et al. (2005). Subthalamic stimulation activates internal pallidus: Evidence from cGMP microdialysis in PD patients. Annals of Neurology, 57, 448–452.

    Article  PubMed  Google Scholar 

  • Stefani, A., Fedele, E., Galati, S., Raiteri, M., Pepicelli, O., Brusa, L., Pierantozzi, M., Peppe, A., Pisani, A., & Gattoni, G. (2006). Deep brain stimulation in Parkinson’s disease patients: Biochemical evidence. Journal of Neural Transmission. Supplementa, 70, 401–408.

    Article  Google Scholar 

  • Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.

    PubMed  CAS  Google Scholar 

  • Vitek, J. L. (2002). Mechanisms of deep brain stimulation: Excitation or inhibition. Movement Disorders, 17, S69–S72.

    Article  PubMed  Google Scholar 

  • Vitek, J. L., Hashimoto, T., Peoples, J., DeLong, M. R., & Bakay, R. A. E. (2004). Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs. Movement Disorders, 19, 907–915.

    Article  PubMed  Google Scholar 

  • Weaver, F., Follett, K., Hur, K., Ippolito, D., & Stern, M. (2005). Deep brain stimulation in Parkinson disease: A metaanalysis of patient outcomes. Journal of Neurosurgery, 103, 956–967.

    Article  PubMed  Google Scholar 

  • Yokoyama, T., Sugiyama, K., Nishizawa, S., Yokota, N., Ohta, S., & Uemura, K. (1999). Subthalamic nucleus stimulation for gait disturbance in Parkinson’s disease. Neurosurgery, 45, 41–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jonathan E. Rubin from the University of Pittsburgh and David Terman from the Ohio State University for their help in implementing their model, Mauro Ursino and Stefano Severi from the University of Bologna for helpful discussions on network and single-cell models, and two anonymous reviewers for their precious hints and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Chiari.

Additional information

Action Editor: David Terman

Appendix

Appendix

Basic sets of equations of the eRTM are presented here. See Rubin and Terman (2004) and Terman et al. (2002) for more details on parameters and equations used.

The membrane potential of each STN neuron obeys the current balance equation:

$$\begin{array}{*{20}l} {{C_{{\text{m}}} V^{\prime }_{{{\text{STN}}}} = - I_{{\text{L}}} - I_{{{\text{Na}}}} - I_{{\text{K}}} - I_{{\text{T}}} - I_{{{\text{Ca}}}} - I_{{{\text{AHP}}}} + } \hfill} \\ {{ + I_{{{\text{GPe}} \to {\text{STN}}}} + I_{{{\text{MoreSTN}}}} + I_{{{\text{DBS}}}} } \hfill} \\ \end{array} $$

The model features: potassium and sodium spike-producing currents I K e I Na; a low-threshold T-type Ca2+ current (I T); a high-threshold Ca2+ current (I Ca); a Ca2+ activated, voltage-independent after-hyperpolarization K+ current (I AHP); and a leak current (I L). These currents (for STN, GPe, GPi and thalamic cells) are described by Hodgkin–Huxley formalism. Constant, depolarizing current I MoreSTN were introduced in Rubin and Terman (2004) to simulate diffuse excitatory input from cortex to STN cells.

Models for single GPe and GPi cells are very similar:

$$\begin{array}{*{20}l} {{C_{{\text{m}}} V^{\prime }_{{{\text{GPe}}}} = - I_{{\text{L}}} - I_{{{\text{Na}}}} - I_{{\text{K}}} - I_{{\text{T}}} - I_{{{\text{Ca}}}} - I_{{{\text{AHP}}}} + } \hfill} \\ {{ + I_{{{\text{STN}} \to {\text{GPe}}}} + I_{{{\text{GPe}} \to {\text{GPe}}}} + I_{{{\text{striatum}} \to {\text{GPe}}}} + I_{{{\text{MoreGPe}}}} } \hfill} \\ \end{array} $$
$$\begin{array}{*{20}l} {{C_{{\text{m}}} V^{\prime }_{{{\text{GPi}}}} = - I_{{\text{L}}} - I_{{{\text{Na}}}} - I_{{\text{K}}} - I_{{\text{T}}} - I_{{{\text{Ca}}}} - I_{{{\text{AHP}}}} + } \hfill} \\ {{ + I_{{{\text{STN}} \to {\text{GPi}}}} + I_{{{\text{GPe}} \to {\text{GPi}}}} + I_{{{\text{striatum}} \to {\text{GPi}}}} + I_{{{\text{MoreGPi}}}} + I_{{{\text{DBS}}}} } \hfill} \\ \end{array} $$

Constant, depolarizing currents I MoreGPe and I moreGPi were introduced to simulate more diffuse excitation from STN to pallidal cells than that reproducible by synaptic connections. I striatum→GPe and I striatum→GPi represent the constant inhibitory current input from striatum to pallidal cells.

Thalamo-cortical relay cells obey the following equation:

$$C_{{\text{m}}} V^{\prime }_{{{\text{TH}}}} = - I_{{\text{L}}} - I_{{{\text{Na}}}} - I_{{\text{K}}} - I_{{\text{T}}} - I_{{{\text{GPi}}}} - I_{{{\text{SM}}}} $$

I SM represents a train of rectangular depolarizing current pulses from the cortex, identified by pulse amplitude (6 pA/μm2), pulse length (6 ms), and pulse repetition frequency.

Synaptic currents I α→β from α to β cells were modelled as follows:

$$I_{{\alpha \to \beta }} = g_{{\alpha \to \beta }} \cdot {\left[ {V_{\beta } - E_{{\alpha \to \beta }} } \right]}{\sum\limits_j {s^{j}_{\alpha } } }$$

The summation is taken over the presynaptic α cells.

The input currents to the cells are negative if inhibitory, positive if excitatory under the sign convention used here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirini, M., Rocchi, L., Sensi, M. et al. A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease. J Comput Neurosci 26, 91–107 (2009). https://doi.org/10.1007/s10827-008-0100-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0100-z

Keywords

Navigation