Skip to main content

Advertisement

Log in

Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

One of the most promising alternatives to toxic heavy metal-based paints is offered by the development of antifouling coatings in which the active ingredients are compounds naturally occurring in marine organisms and operating as natural antisettlement agents. Sessile marine macroalgae are remarkably free from settlement by fouling organisms. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. In this study, a dichloromethane extract from the brown seaweed Sargassum muticum was tested in situ and, after 2 months of immersion, showed less fouling organisms on paints in which the extract was included, compared to paints containing only copper after 2 months of immersion. No barnacles or mussels have been observed on the test rack. Identification by NMR and GC/MS of the effective compound revealed the abundance of palmitic acid, a commonly found fatty acid. Pure palmitic acid showed antibacterial activity at 44 µg mL−1, and also inhibited the growth of the diatom Cylindrotheca closterium at low concentration (EC50 = 45.5 µg mL−1), and the germination of Ulva lactuca spores at 3 µg mL−1. No cytotoxicity was highlighted, which is promising in the aim of the development of an environmentally friendly antifouling paint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abarzua S, Jakubowski S (1995) Biotechnological investigation for the prevention of biofouling: I. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser 123:301–312, doi:10.3354/meps123301

    Article  CAS  Google Scholar 

  • Aminot A. (1983b) Dosage de la chlorophylle et des phéopigments par spectrophotomètrie In: Manuel des analyses physico-chimiques en milieu marin (Aminot A. and Chaussepied), pp. 177-192. CNEXO, BNDO/ Documentation, Brest

  • Arunkumar K, Narayanan Selvapalam N, Rengasamy R (2005) The antibacterial compound sulphoglycerolipid 1–0 palmitoyl-3–0(6′-sulpho-alpha-quinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Bot Mar 48:441–445, doi:10.1515/BOT.2005.058

    Article  CAS  Google Scholar 

  • Bakus GJ, Targett NM, Schulte B (1986) Chemical ecology of marine organisms: an overview. J Chem Ecol 12:951–987, doi:10.1007/BF01638991

    Article  CAS  Google Scholar 

  • Banaimoon SA (1992) Fatty acids in marine macroalgae from southern Yemen (Hadarmout) including occurrence of eicosatetraenoic (20:4) and eicosapentaenoic (20:5) acids. Bot Mar 35:165–168

    CAS  Google Scholar 

  • Barbosa JP, Fleury BG, da Gama BAP, Teixeira VL, Pereira RC (2007) Natural products as antifoulants in the Brazilian brown alga Dictyota pfaffii (Phaeophyta, Dictyotales). Biochem Syst Ecol 35:549–553, doi:10.1016/j.bse.2007.01.010

    Article  CAS  Google Scholar 

  • Bazes A (2006) Recherche et valorisation de principes actifs antifouling isolés à partir de trois macroalgues. Thèse de doctorat, Université de Bretagne-Sud

  • Bazes A, Silkina A, Defer D, Bernède-Bauduin C, Quéméner E, Braud J-P, Bourgougnon N (2006) Active substances from Ceramium botryocarpum used as antifouling products in aquaculture. Aquaculture 258:664–674, doi:10.1016/j.aquaculture.2006.04.017

    Article  CAS  Google Scholar 

  • Benkendorff K, Davis AR, Rogers CN, Bremner JB (2005) Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J Exp Mar Biol Ecol 316:29–44, doi:10.1016/j.jembe.2004.10.001

    Article  CAS  Google Scholar 

  • Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Tech 201:3642–3652, doi:10.1016/j.surfcoat.2006.08.129

    Article  CAS  Google Scholar 

  • Chen CY (2004) Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga Bangia atropurpurea. Water Res 38:1014–1018, doi:10.1016/j.watres.2003.11.029

    Article  PubMed  CAS  Google Scholar 

  • Cho JY, Choi JS, Kang SE, Kim JK, Shin HW, Hong YK (2005) Isolation of antifouling active pyroglutamic acid, triethyl citrate and di-n-octylphthalate from the brown seaweed Ishige okamurae. J Appl Phycol 17:431–435, doi:10.1007/s10811–005–0460-y

    Article  Google Scholar 

  • Critchley AT, Farnham WF, Yoshida T, Norton TA (1990) A bibliography of the invasive alga Sargassum muticum (Yendo) Fensholt (Fucales, Sargassaceae). Bot Mar 33:551–562

    Google Scholar 

  • Davis AR, Targett NM, McConnel OJ, Young CM (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In: Scheuer PJ (ed) Bioorganic marine chemistry. 3. Springer, Berlin, pp 85–114

    Google Scholar 

  • Fletcher RL (1989) A bioassay technique using the marine fouling green alga Enteromorpha. Int Biodeterior 25:407–422, doi:10.1016/0265–3036(89)90067–5

    Article  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104, doi:10.1039/b302231p

    Article  PubMed  CAS  Google Scholar 

  • Ganti VS, Kim KH, Bhattarai HD, Shin HW (2006) Isolation and characterisation of some antifouling agents from the brown alga Sargassum confusum. J Asian Nat Prod Res 8:309–315, doi:10.1080/10286020500034980

    Article  PubMed  CAS  Google Scholar 

  • Glover DE, Whittemore MS, Bryant SD (1997) Methods and compositions for controlling biofouling using polyglycol fatty acid esters. International Patent Application WO 97/11912

  • Harlin M (1996) Allelochemistry in marine algae. Crit Rev Plant Sci 5:237–249

    Article  Google Scholar 

  • Harvey HR, Kennicutt MC (1992) Selective alteration of Sargassum lipids in anoxic sediments of the Orca basin. Org Geochem 18:181–187, doi:10.1016/0146–6380(92)90128-K

    Article  CAS  Google Scholar 

  • Hattori T, Shizuri Y (1996) A screening method for antifouling substances using spores of the fouling macroalga Ulva conglobata Kjellman. Biofouling 8:147–160

    Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134, doi:10.1016/S0022–0981(96)02659–7

    Article  CAS  Google Scholar 

  • Hay ME, Fenical W (1988) Marine plant-herbivore interactions: The ecology of chemical defense. Annu Rev Ecol Syst 19:111–145, doi:10.1146/annurev.es.19.110188.000551

    Article  Google Scholar 

  • Hellio C (2000) Recherche de nouvelles substances à activité antifouling à partir de macroalgues du Littoral Breton. Thèse de Doctorat, Université de La Rochelle

  • Hellio C, De La Broise D, Dufossé L, Le Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Environ Res 52:231–247, doi:10.1016/S0141–1136(01)00092–7

    Article  PubMed  CAS  Google Scholar 

  • Hellio C, Marechal J-P, Véron B, Bremer AG, Clare AS, Le Gal Y (2004) Seasonal variation of antifouling activities of marine algae from the Brittany coast (France). Mar Biotechnol 6:67–82, doi:10.1007/s10126–003–0020-x

    Article  PubMed  CAS  Google Scholar 

  • Hossain Z, Kurihara H, Takahashi K (2003) Biochemical composition and lipid compositional properties of the brown alga Sargassum horneri. Pak J Biol Sci 6(17):1497–1500

    Article  Google Scholar 

  • Jackson SM (1991) Microalgae: Their status as fouling organisms. OEbalia (Taranto) 17(1):295–303

    Google Scholar 

  • Kornprobst J-M (2005) Substances naturelles d’origine marine, Vol 1: Généralités, micro-organismes, algues. Tec & Doc, Paris

    Google Scholar 

  • Kubo I, Himejima M, Tsujmoto K, Muroi H, Ichikawa N (1992) Antibacterial activity of crinitol and its potentiation. J Nat Prod 55:780–785, doi:10.1021/np50084a012

    Article  PubMed  CAS  Google Scholar 

  • Lambert SJ, Thomas KV, Davy AJ (2006) Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes. Chemosphere 63:734–743, doi:10.1016/j.chemosphere.2005.08.023

    Article  PubMed  CAS  Google Scholar 

  • Li X, Fan X, Han L, Lou Q (2002) Fatty acids of some algae from the Bohai Sea. Phytochem 59:157–161, doi:10.1016/S0031–9422(01)00437-X

    Article  CAS  Google Scholar 

  • Mackintosh CE, Maldonado J, Hongwu J, Hoover N, Chong A, Ikonomou MG, Gobas FAPC (2004) Distribution of phthalate esters in a marine aquatic food web: comparison to polychlorinated biphenyls. Environ Sci Technol 38:2011–2020, doi:10.1021/es034745r

    Article  PubMed  CAS  Google Scholar 

  • Maréchal JP, Culioli G, Hellio C, Thomas-Guyon H, Callow. ME, Clare AS, Ortalo-Magné A (2004) Seasonal variations in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcata against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. J Exp Mar Biol Ecol 313:47–62

  • McLaren C, Ellis MN, Hunter GA (1983) A colorimetric assay or the measurement of the sensitivity of Herpes simplex viruses to antiviral agents. Antiviral Res 3:223–234, doi:10.1016/0166–3542(83)90001–3

    Article  PubMed  CAS  Google Scholar 

  • Melancon MJ Jr, Lech JJ (1976) Distribution and biliary excretion products of di-2-ethylhexyl phthalate in rainbow trout. Drug Metab Dispos 4:112–118

    PubMed  CAS  Google Scholar 

  • Morris RJ (1970) Phthalic acid in deep sea jellyfish Atolla. Nature 227:1264, doi:10.1038/2271264a0

    Article  PubMed  CAS  Google Scholar 

  • Naviner M, Bergé J-P, Durand P, Le Bris H (1999) Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174:15–24, doi:10.1016/S0044–8486(98)00513–4

    Article  CAS  Google Scholar 

  • Noguchi T, Ikawa M, Uebel JJ, Andersen KK (1979) Lipid constituents of the red algae Ceramium rubrum. A search for antimicrobial and chemical defense substances. In: Hoppa HA, Levring T, Tanaka Y (eds) Marine algae in pharmaceutical science. de Gruyter, NY, pp 711–718

    Google Scholar 

  • Peakall DB (1975) Phthalate esters: Occurence and biological effects. Residue Rev 54:1–41

    PubMed  CAS  Google Scholar 

  • Plouguerne E, Le Lann K, Connan S, Jechoux G, Deslandes E, Stiger-Pouvreau V (2006) Spatial and seasonal variation in density, reproductive status, length and phenolic content of the invasive brown macroalga Sargassum muticum (Yendo) Fensholt along the coast of Western Brittany (France). Aquat Bot 85:337–346, doi:10.1016/j.aquabot.2006.06.011

    Article  Google Scholar 

  • Risk M, Harrison P, Lewis J (1997) Wood preserving composition. Patent Application WO 97/34747

  • Rosell K, Srivastava L (1987) Fatty acids as antimicrobial substances in brown algae. Hydrobiologia 151–152:471–475, doi:10.1007/BF00046169

    Article  Google Scholar 

  • Sastry VMVS, Rao GRK (1994) Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Bot Mar 37:357–360

    Article  CAS  Google Scholar 

  • Sastry VMVS, Rao GRK (1995) Dioctyl phthalate and antibacterial compound from marine brown alga Sargassum wightii. J Appl Phycol 7:185–186, doi:10.1007/BF00693066

    Article  CAS  Google Scholar 

  • Sawant SS, Sonak S, Garg A (1995) Growth inhibition of fouling bacteria and diatoms by extract of terrestrial plant, Derris scandens (Dicotyledonae:Leguminocae). Indian J Mar Sci 24:229–230

    Google Scholar 

  • Sieburth JM, Conover JT (1965) Sargassum tannin, an anti-biotic which retards fouling. Nature 208:52–53, doi:10.1038/208052a0

    Article  Google Scholar 

  • Stales CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749, doi:10.1016/S0045–6535(97)00195–1

    Article  Google Scholar 

  • Steinberg PD (1992) Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In: Paul VJ (ed) Ecological roles of marine natural products. Cornell University Press, Ithaca, pp 51–92

    Google Scholar 

  • Steinberg PD, de Nys R, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12:227–244

    Article  Google Scholar 

  • Vaskovsky VE, Khotimchenko SV, Xia B, Hefang L (1996) Polar lipids and fatty acids of some marine macrophytes from the Yellow Sea. Phytochemistry 42:1347–1356, doi:10.1016/0031–9422(96)00117–3

    Article  CAS  Google Scholar 

  • Wahl M (1989) Marine epibiosis: I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189, doi:10.3354/meps058175

    Article  Google Scholar 

  • Wofford HW, Wilsey CD, Neff GS et al (1981) Bioaccumulation and metabolism of phthalate esters by oysters, brown shrimp and sheepshead. Ecotoxicol Environ Saf 5:202–210, doi:10.1016/0147–6513(81)90035-X

    Article  PubMed  CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology- past, present and future step towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104, doi:10.1016/j.porgcoat.2003.06.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Bazes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazes, A., Silkina, A., Douzenel, P. et al. Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J Appl Phycol 21, 395–403 (2009). https://doi.org/10.1007/s10811-008-9382-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9382-9

Keywords

Navigation