Skip to main content
Log in

Hirudo medicinalis: A Platform for Investigating Genes in Neural Repair

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have used the nervous system of themedicinal leech as a preparation to study the molecular basis of neural repair. The leech central nervous system, unlikemammalian CNS, can regenerate to restore function, and contains identified nerve cells of known function and connectivity.

We have constructed subtractive cDNAprobes from whole and regenerating ganglia of the ventral nerve cord and have used these to screen a serotonergic Retzius neuron library. This identifies genes that are regulated as a result of axotomy, and are expressed by the Retzius cell.

This approach identifies many genes, both novel and known. Many of the known genes identified have homologues in vertebrates, including man. For example, genes encoding thioredoxin (TRX), Rough Endoplasmic Reticulum Protein 1 (RER-1) and ATP tsynthase are upregulated at 24 h postinjury in leech nerve cord.

To investigate the functional role of regulated genes in neuron regrowthwe are using microinjection of antisense oligonucleotides in combination with horseradish peroxidase to knock down expression of a chosen gene and to assess regeneration in single neurons in 3-D ganglion culture. As an example of this approach we describe experiments to microinject antisense oligonucleotide to a leech isoform of the structural protein, Protein 4.1.

Our approach thus identifies genes regulated at different times after injury thatmay underpin the intrinsic ability of leech neurons to survive damage, to initiate regrowth programs and to remake functional connections. It enables us to determine the time course of gene expression in the regenerating nerve cord, and to study the effects of gene knockdown in identified neurons regenerating in defined conditions in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–402.

    CAS  PubMed  Google Scholar 

  • Baines, A. J., Keating, L., Phillips, G. W., and Scott, C. (2001). The postsynaptic spectrin/4.1 membrane protein “accumulation machine.” Cell & Molecular Biol. Lett. 6:691–702.

    Google Scholar 

  • Baker, M. W., and Macagno, E. (2000). RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse. Curr. Biol. 10:1071–1074.

    CAS  PubMed  Google Scholar 

  • Bannatyne, B. A., Blackshaw, S. E., and McGregor, M. S. (1989). New growth elicited in adult leech mechanosensory neurones by peripheral axon damage. J. Exp. Biol. 143:419–434

    CAS  PubMed  Google Scholar 

  • Bennett, V. (1989). The spectrin-actin junction of erythrocyte membrane skeletons. Biochimica et Biophysica Acta 988:107–121.

    CAS  PubMed  Google Scholar 

  • Blackshaw, S. E. (1994). Cellular and molecular approaches to neural repair in the medicinal leech. Prog. Neurobiol. 42:333–338.

    CAS  PubMed  Google Scholar 

  • Blackshaw, S. E., Arkison, S., Cameron, C., and Davies, J. A. (1997). Promotion of regeneration and axon growth following injury in an invertebrate nervous system by the use of three-dimensional collagen gels. Proc. Royal Soc. B 264:657–661.

    CAS  Google Scholar 

  • Blackshaw, S. E., Arkison, S., Davies, J. A., and Holmes, D. (1998). Intracellular injection of antisense oligonucleotides into identifed leech neurons regenerating in 3-D cultures. J. Physiol. 509P:191.

    Google Scholar 

  • Blackshaw, S. E., Babington, E. J., Emes, R. D., Malek, J., and Wang, W. -Z. (2004). Identifying genes for neuron survival and axon outgrowth in Hirudo medicinalis. J Anat. 204:13–24.

    CAS  PubMed  Google Scholar 

  • Boiziau, C., Thuong, N. T., and Toulmé, J. J. (1992). Mechanisms of the inhibition of reverse transcription by antisense oligonucleotides. Proc. National Acad. Sci. USA 89:768–772.

    CAS  Google Scholar 

  • Bonilla, I. E., Tanabe, K., and Strittmatter, S. M. (2002). Small Proline-Rich Repeat Protein 1A is Expressed by Axotomized Neurons and Promotes Axonal Outgrowth. J. Neurosci. 22:1303–1315.

    CAS  PubMed  Google Scholar 

  • Cai, D., Qiu, J., Cao, Z., McAtee, M., Bregman, B. S., and Filbin, M. T. (2001). Neuronal Cyclic AMP Controls the Developmental Loss in Ability of Axons to Regenerate. J. Neurosci. 21:4731–4739.

    CAS  PubMed  Google Scholar 

  • Christman, C. W., Slavant, J. B., Jr., Walker, S. A., and Povlishock, J. T. (1997). Characterization of a prolonged regenerative attempt by diffusely injured axons following traumatic brain injury in adult cat: A light and electron microscopic immunocytochemical study. Acta Neuropathologica 94:329–337.

    CAS  PubMed  Google Scholar 

  • Coleman, S. K., Cai, C., Mottershead, D. G., Haapalahti, J. -P., and Keinanen, K. (2003). Surface Expression of GluR-D AMPA Receptor Is Dependent on an Interaction between Its C-Terminal Domain and a 4.1 Protein. J. Neurosci. 23:798–806.

    CAS  PubMed  Google Scholar 

  • Denker, S. P., and Barber, D. L. (2002). Ion transport proteins anchor and regulate the cytoskeleton. Curr. Opinion Cell Biol. 14:214–220.

    CAS  PubMed  Google Scholar 

  • Emes, R. D., Wang, W. -Z., and Blackshaw, S. E. (2002). Subtracted cDNA libraries from regenerating leech ganglia identify transcripts upregulatd at different times post-axotomy. J. Physiol. 539P:108P.

    Google Scholar 

  • Emes, R. D., Wang, W. -Z., Lanary, K., and Blackshaw, S. E. (2003). HmCRIP, a cysteine-rich intestinal protein, is expressed by an identified regenerating nerve cell. FEBS Lett. 533:124–128.

    CAS  PubMed  Google Scholar 

  • Fawcett, J. W. (1992). Intrinsic neuronal determinants of regeneration. Trends Neurosci. 15:5–8.

    CAS  PubMed  Google Scholar 

  • Fawcett, J. W., and Keynes, R. (1990). Peripheral nerve regeneration. Ann. Rev. Neurosci. 13:43–60.

    CAS  PubMed  Google Scholar 

  • Fernandez-de-Miguel, F. F. (1997). Outgrowth patterns and directed growth of identified neurons induced by native substrates in culture. J.Comparative Neurology 380:1–15.

    CAS  Google Scholar 

  • Fernandez-de-Miguel, F. F., and Drapeau, P. (1995). Synapse formation and function: insights from identified leech neurons in culture. J. Neurobiol. 27:367–379.

    CAS  PubMed  Google Scholar 

  • Fu, S. Y., and Gordon, T. (1997). The cellular and molecular basis of peripheral nerve regeneration. Mol. Neurobiol. 14: 67–116.

    CAS  PubMed  Google Scholar 

  • Giehl, K. M., Röhrig, S., Bonatz, H., Gutjahr, M., Leiner, B., Bartke, I., Yan, Q., Reichardt, L. F., Backus, C., Welcher, A. A., Dethleffsen, K., Mestres, P., and Meyer, M. (2001). Endogenous Brain-Derived Neurotrophic Factor and Neurotrophin-3 Antagonistically Regulate Survival of Axotomized Corticospinal Neurons. In Vivo J. Neurosci. 21:3492–3502.

    CAS  Google Scholar 

  • Goodstadt, L., and Ponting, C. P. (2001). CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17(9):845–846.

    CAS  PubMed  Google Scholar 

  • Hunter, A. J., Leslie, R. A., and Gloger, I. S. (1995). Probing the function of novel genes in the nervous system: Is antisense the answer? Trends Neurosci. 18:329–331.

    CAS  PubMed  Google Scholar 

  • Korneev, S., Blackshaw, S. E., and Davies, J. A. (1994). cDNA libraries from a few neural cells. Progr. Neurobiol. 42:339–346.

    CAS  PubMed  Google Scholar 

  • Korneev, S., Blackshaw, S. E., Kaiser, K., and Davies, J. A. (1996). cDNA libraries from identified neurons. Proc Roy Soc B 263:56–72.

    Google Scholar 

  • Korneev, S., Fedorov, A., Collins, R., Blackshaw, S. E., and Davies, J. A. (1997). A subtractive cDNA library from an identified regenerating neuron is enriched in sequences upregulated during nerve regeneration. Invertebrate Neurosci. 3:185–192.

    CAS  Google Scholar 

  • Kwon, B. K., Liu, J., Messerer, C., Kobayashi, N. R., McGraw, J., Oschipok, L., and Tetzlaff, W. (2002). Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. PNAS 99(5):3246–3251.

    CAS  PubMed  Google Scholar 

  • Lichtman, J. W. (1977). The reorganization of synaptic connections in the rat submandibular ganglion during post-natal development. J. Physiol. 273:155–177.

    CAS  PubMed  Google Scholar 

  • Leake, L. D. (1986). Leech Retzius cells and 5-hydroxytryptamine. Comp. Biochem. Physiol. C 83(2):229–239.

    CAS  PubMed  Google Scholar 

  • Malek, J. A., and Blackshaw, S. E. (2004). Real-time RT-PCR analysis of voltage-gated sodium channel transcripts in leech ganglia after injury. J. Physiol. 41P: PC29.

    Google Scholar 

  • Marty, S., and Peschanski, M. (1994). Fine structural alteration in target-deprived axonal terminals in the rat thalamus. Neuroscience 62:1121–1132.

    CAS  PubMed  Google Scholar 

  • Masuda-Nakagawa, L. M., and Wiedemann, C. (1992). The role of matrix molecules in regeneration of leech CNS. J. Neurobiol. 23:551–567.

    CAS  PubMed  Google Scholar 

  • Muller, K. J., and McMahan, U. J. (1976). The shapes of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: A study using intracellular injection of horseradish peroxidase. Proc. Royal Soc. London Series B 194:481–499.

    CAS  Google Scholar 

  • Muller, K. J., Nicholls, J. G., and Stent, G. S. (1981). Neurobiology of the Leech. Cold Spring Harbor Publications, Cold Spring Harbor, NY.

    Google Scholar 

  • Neely, M. D. (1993). Role of substrate and calcium in neurite retraction of leech neurons following depolarization. J. Neurosci. 13:1292–1301.

    CAS  PubMed  Google Scholar 

  • Nicholls, J. G. (1987). The Search for Connections: Studies of Regeneration in the Nervous System of the Leech. Sinauer, Sunderland, MA.

    Google Scholar 

  • Nicholls, J. G., Adams, W. B., Eugenin, J., Geisler, R., Lepre, M., Luque, J. M., and Winzler, M. (1999). Why does the central nervous system not regenerate after injury? Survey Opthalmol. 43 (Suppl. 1), S136–S141.

    Google Scholar 

  • Pellegrino, M., Nencioni, B., and Matteoli, M. (1984). Response to axotomy of an identified leech neuron, in vivo and in culture. Brain Res. 298:347–352.

    CAS  PubMed  Google Scholar 

  • Pinder, J. C., Clark, S. E., Baines, A. J., Morris, E., and Gratzer, W. B. (1981). The construction of the red cell cytoskeleton. Prog. Clin. Biol. Res. 55:343–361.

    CAS  PubMed  Google Scholar 

  • Ready, D. F., and Nicholls, J. G. (1979). Identified neurons isolated from leech CNS make selective connections in culture. Nature 281:67–69.

    CAS  PubMed  Google Scholar 

  • Retzius, G. (1891). Zur kenntniss des Zentralen Nervensystems der Würmer. Biologische Untersuchungen, Neue Folge 2:1–28.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Scott, C., and Baines, A. J. (1998). Identification of protein 4.1 isotypes at the postsynaptic density. Mol.r Biol. Cell 9 SS:213.

    Google Scholar 

  • Scott, C., Bellamy, M. L., Hayes, N. V. L., and Baines, A. J. (1998). Distribution and activities of neuronal protein 4.1 isotypes. Biochem. Soc. Transactions 26:S106.

    CAS  Google Scholar 

  • Shen, M., Liang, F., Walensky, L. D., and Huganir, R. L. (2000). Regulation of AMPA receptor GluR1 subunit surface expression by a 4.1N linked actin cytoskeletal association. J. Neurosci. 20:7932–7940.

    CAS  PubMed  Google Scholar 

  • Singleton, R. H., Zhu, J., Stone, J. R., and Povlishock, J. T. (2002). Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J. Neurosci. 22(3):791–802.

    CAS  PubMed  Google Scholar 

  • Song, M. H., Huang, F. Z., Chang, G. Y., and Weisblat, D. A. (2002). Expression and function of an even-skipped homolog in the leech Helobdella robusta. Development 129:3681–3692.

    CAS  PubMed  Google Scholar 

  • Stein, C. A. (1995). Does antisense exist? Nature Medicine 1:1119–1121.

    CAS  PubMed  Google Scholar 

  • Szczupak, L., Kristan, W. B. (1995). Widespread mechanosensory activation of the serotonergic system of the medicinal leech. J. Neurophysiol. 74:2614–2623.

    CAS  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 11:4673–80.

    Google Scholar 

  • Trueta, C., Mendez, B., and Fernandez-de-Miguel, F. (2003). Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurons. J. Physiol. 547:405–416.

    CAS  PubMed  Google Scholar 

  • Velazquez-Ulloa, N., Blackshaw, S. E., Szczupak, L., Trueta, C., Garcia, E., and de Miguel, F. F. (2003). Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. J. Neurobiol. 54:604–617.

    PubMed  Google Scholar 

  • von Bernhardi, R., and Muller, K. J. (1995). Repair of the Central Nervous System: Lessons from Lesions in Leeches. J. Neurobiol. 27:353–366.

    CAS  PubMed  Google Scholar 

  • Walensky, L. D., Blackshaw, S., Liao, D., Watkins, C. C., Weier, H. U. G., Parra, M., Huganir, R. L., Conboy, J. G., Mohandas, N., and Snyder, S. H. (1999). A novel neuron-enriched homologue of the erythrocyte membrane cytoskeletal protein 4.1. J. Neurosci. 19:6457–6467.

    CAS  PubMed  Google Scholar 

  • Wang, W. -Z., Christoffers, K., Emes, R., and Blackshaw, S. E. (2002). Genes regulated 24 h after axotomy in identified 5-HT neurons in Hirudo medicinalis. J. Physiol. 539P:107P.

    Google Scholar 

  • Willard, M., and Skene, J. H. P. (1982). In Nicholls, J. G. (ed.), Repair and Regeneration of the Nervous System. Dahlem Konferenzen Berlin, Heidelberg, New York, Springer-Verlag. pp. 71–90.

    Google Scholar 

  • Yamakawa, H., Ohara, R., Nakajima, D., Nakayama, M., and Ohara, O. (1999). Molecular characterization of a new member of the protein 4.1 family (brain 4.1) in rat brain. Mol. Brain Res. 70:197–209.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.Z., Emes, R.D., Christoffers, K. et al. Hirudo medicinalis: A Platform for Investigating Genes in Neural Repair. Cell Mol Neurobiol 25, 427–440 (2005). https://doi.org/10.1007/s10571-005-3151-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3151-y

Keywords

Navigation