Skip to main content
Log in

Collisional velocities and rates in resonant planetesimal belts

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We consider a belt of small bodies (planetesimals, asteroids, dust particles) around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber (protoplanet, planet). The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and mean collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. At low to moderate eccentricities and libration amplitudes of tens of degrees, which are typical of many astrophysical applications, the collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. The collisional rates increase with the decreasing libration amplitude of the resonant argument, depend on the eccentricity distribution of objects, and vary from one resonance to another. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bottke W.F., Nolan M.C., Greenberg R. and Kolvoord R.A. (1994). Velocity distributions among colliding asteroids. Icarus 107: 255–268

    Article  ADS  Google Scholar 

  • Bottke W.F., Durda D.D. and Nesvorný D. (2005). Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179: 63–94

    Article  ADS  Google Scholar 

  • Campo Bagatin A., Cellino A., Davis D.R., Farinella P. and Paolicchi P. (1994). Wavy size distributions for collisional systems with a small-size cutoff. Planet. Space Sci. 42: 1079–1092

    Article  ADS  Google Scholar 

  • Davis D.R. and Farinella P. (1997). Collisional evolution of Edgeworth-Kuiper belt objects. Icarus 125: 50–60

    Article  ADS  Google Scholar 

  • Dell’Oro A. and Paolicchi P. (1998). Statistical properties of encounters among asteroids: A new, general purpose, formalism. Icarus 136: 328–339

    Article  ADS  Google Scholar 

  • Dell’Oro A., Marzari P.P.F., Dotto E. and Vanzani V. (1998). Trojan collision probability: a statistical approach. Astron. Astrophys 339: 272–277

    ADS  Google Scholar 

  • Dell’Oro A., Marzari F., Paolicchi P. and Vanzani V. (2001). Updated collisional probabilities of minor body populations. Astron. Astrophys. 366: 1053–1060

    Article  ADS  Google Scholar 

  • Dell’Oro A., Paolicchi P., Cellino A. and Zappalà V. (2002). Collisional rates within newly formed asteroid families. Icarus 156: 191–201

    Article  ADS  Google Scholar 

  • Gallardo T. (2006). Atlas of the mean motion resonances in the Solar system. Icarus 184: 29–38

    Article  ADS  Google Scholar 

  • Gold T. (1975). Resonant orbits of grains and the formation of satellites. Icarus 25: 489–491

    Article  ADS  Google Scholar 

  • Greenberg R. (1982). Orbital interactions: a new geometrical formalism. Astron. J. 87: 184–195

    Article  ADS  Google Scholar 

  • Greenberg R., Wacker J.F., Hartmann W.K. and Chapman C.R. (1978). Planetesimals to planets: numerical simulation of collisional evolution. Icarus 35: 1–26

    Article  ADS  Google Scholar 

  • Greenberg R., Bottke W.F., Carusi A. and Valsecchi G.B. (1991). Planetary accretion rates: analytical derivation. Icarus 94: 98–111

    Article  ADS  Google Scholar 

  • Jancart S., Lemaitre A. and Letocart V. (2003). The role of the inclination in the captures in external resonances in the three body problem. Celest. Mech. Dynam. Astron. 86: 363–383

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Krivov A.V., Sremčević M. and Spahn F. (2005). Evolution of a Keplerian disk of colliding and fragmenting particles: a kinetic model and application to the Edgeworth-Kuiper-belt. Icarus 174: 105–134

    Article  ADS  Google Scholar 

  • Krivov A.V., LÖhne T. and Sremčević M. (2006). Dust distributions in debris disks: effects of gravity, radiation pressure and collisions. Astron. Astrophys. 455: 509–519

    Article  ADS  Google Scholar 

  • Krivov A.V., Queck M., LÖhne T. and Sremčević M. (2007). On the nature of clumps in debris disks. Astron. Astrophys. 462: 199–210

    Article  ADS  Google Scholar 

  • Kuchner M.J. and Holman M.J. (2003). The geometry of resonant signatures in debris disks with planets. Astrophys. J. 588: 1110–1120

    Article  ADS  Google Scholar 

  • Lissauer J.J. (1993). Planet formation. Ann. Rev. Astron. Astrophys. 31: 129–174

    Article  ADS  Google Scholar 

  • Marzari F. and Weidenschilling S. (2002). Mean motion resonances, gas drag and supersonic planetesimals in the solar nebula. Celest. Mech. Dynam. Astron. 82: 225–242

    Article  MATH  ADS  Google Scholar 

  • Marzari F., Davis D. and Vanzani V. (1995). Collisional evolution of asteroid families. Icarus 113: 168–187

    Article  ADS  Google Scholar 

  • Marzari F., Scholl H. and Farinella P. (1996). Collision rates and impact velocities in the Trojan asteroid swarms. Icarus 119: 192–201

    Article  ADS  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge Univ. Press (1999)

  • Öpik E.J. (1951). Collision probabilities with the planets and the distribution of interplanetary matter. Proc.R. I. A. 54: 165–199

    MATH  ADS  Google Scholar 

  • Quillen A.C. (2006). Reducing the probability of capture into resonance. Mon. Not. Roy. Astron. Soc. 365: 1367–1382

    Article  ADS  Google Scholar 

  • Safronov, V.S.: Evolution of the protoplanetary cloud and formation of the earth and planets (Nauka, Moscow (in Russian), 1969. [English translation: NASA TTF-677, 1972.])

  • Spaute D., Weidenschilling S.J., Davis D.R. and Marzari F. (1991). Accretional evolution of a planetesimal swarm. I. A new simulation. Icarus 92: 147–164

    Article  ADS  Google Scholar 

  • Stern S.A. (1995). Collisional time ccales in the Kuiper disk and their implications. Astron. J. 110: 856–868

    Article  ADS  Google Scholar 

  • Stern S.A. (1996). Signatures of collisions in the Kuiper Disk. Astron. Astrophys. 310: 999–1010

    ADS  Google Scholar 

  • Thébault P. and Brahic A. (1998). Dynamical influence of a proto-Jupiter on a disc of colliding planetesimals. Planet. Space Sci. 47: 233–243

    Article  ADS  Google Scholar 

  • Thébault P. and Doressoundiram A. (2003). Colors and collision rates within the Kuiper belt: problems with the collisional resurfacing scenario. Icarus 162: 27–37

    Article  ADS  Google Scholar 

  • Thébault P., Augereau J.-C. and Beust H. (2003). Dust production from collisions in extrasolar planetary systems. The inner β Pictoris disc. Astron. Astrophys. 408: 775–788

    Article  ADS  Google Scholar 

  • Weidenschilling S.J., Spaute D., Davis D.R., Marzari F. and Ohtsuki K. (1997). Accretional evolution of a planetesimal swarm. 2. The terrestrial zone. Icarus 128: 429–455

    Article  ADS  Google Scholar 

  • Wetherill G.W. (1990). Comparison of analytical and physical modeling of planetesimal accumulation. Icarus 88: 336–354

    Article  ADS  Google Scholar 

  • Wetherill G.W. and Stewart G.R. (1989). Accumulation of a swarm of small planetesimals. Icarus 77: 350–357

    Article  ADS  Google Scholar 

  • Wisdom J. (1983). Chaotic behavior and the origin of the 3/1 Kirkwood gap. Icarus 56: 51–74

    Article  ADS  Google Scholar 

  • Wyatt M.C. (2003). Resonant trapping of planetesimals by planet migration: debris disk clumps and Vega’s similarity to the solar system. Astrophys. J. 598: 1321–1340

    Article  ADS  Google Scholar 

  • Wyatt M.C. (2006). Dust in resonant extrasolar Kuiper belts: grain size and wavelength dependence of disk structure. Astrophys. J. 639: 1153–1165

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Queck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queck, M., Krivov, A.V., Sremčević, M. et al. Collisional velocities and rates in resonant planetesimal belts. Celestial Mech Dyn Astr 99, 169–196 (2007). https://doi.org/10.1007/s10569-007-9095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9095-4

keywords

Navigation