Skip to main content
Log in

Recovering Whooper Swans do not cause a decline in Eurasian Wigeon via their grazing impact on habitat

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The Whooper Swan (Cygnus cygnus) is a good example of successful conservation, with rapidly growing numbers in Fennoscandia in recent decades. To the contrary, Eurasian Wigeon (Mareca penelope) shows a strong negative trend in breeding numbers, which raises conservation concerns. Previous research suggests a causal link between recent population trajectories of the two species. Both preferentially breed on wetlands with abundant horsetail (Equisetum spp.), a plant providing food for Whooper Swan and crucial feeding microhabitat for Eurasian Wigeon broods. We here test predictions based on the hypothesis that grazing on Equisetum by Whooper Swan reduces breeding habitat or breeding habitat quality for Eurasian Wigeon. We use data from 60 lakes in which waterfowl were counted in 1990–1991 and 2016, and Equisetum was mapped in 1990–1991 and 2013–2014. Lakes colonized by Whooper Swan typically had more abundant Equisetum vegetation in the past than lakes not colonized. Lake-specific decrease of Equisetum was not associated with colonization by Whooper Swan. The number of lakes occupied by Eurasian Wigeon decreased, but the decrease was not stronger on lakes colonized by Whooper Swan than on those that were not. Contrary to our prediction, current Eurasian Wigeon abundance was positively associated with Whooper Swan abundance. Moreover, Eurasian Wigeon did not decrease more on lakes from which Equisetum disappeared than on lakes in which there was still Equisetum left. This study does not support the idea that Whooper Swan affects Eurasian Wigeon negatively by grazing on Equisetum.

Zusammenfassung

Wiedererstarken der Singschwäne-Populationen verursacht durch das Grasen im gleichen Habitat keinen Rückgang der Pfeifente

Mit seinen in Fennoskandinavien in den letzten Jahrzehnten rasch gewachsenen Populationen stellt der Singschwan (Cygnus cygnus) ein gutes Beispiel für gelungenen Artenschutz dar. Im Gegensatz dazu zeigt die Pfeifente (Mareca penelope) in der Anzahl an Brutpaaren einen stark rückläufigen Trend, was zu Besorgnis im Naturschutz führt. Frühere Untersuchungen legen einen ursächlichen Zusammenhang zwischen den Populationsentwicklungen beider Arten nahe. Beide brüten bevorzugt in Feuchtgebieten mit starkem Schachtelhalmbewuchs (Equisetum spp.); diese Pflanze ist eine wichtige Nahrung für Singschwäne, während Pfeifenten bevorzugt in den Schachtelhalm-Habitaten brüten. Wir testeten Vorhersagen basierend auf der Hypothese, dass das Abweiden von Schachtelhalm durch Singschwäne das Brutareal der Pfeifenten verkleinert, bzw. dessen Qualität verringert. Wir verwendeten Daten von 60 Seen, auf denen die Anzahl an Wasservögeln 1990–1991 und auch 2016 gezählt und der Schachtelhalm-Bestand kartographiert wurde (1990–1991 und 2013–2014). Seen mit Singschwänen hatten typischerweise früher mehr Schachtelhalmvegetation als solche ohne Singschwäne. Ein für bestimmte Seen spezifischer Rückgang des Schachtelhalms stand in keinem Zusammenhang mit einer Besiedlung durch Singschwäne. Die Anzahl der von Pfeifenten besiedelten Seen ging zurück, aber dieser Rückgang war auf Seen mit Singschwänen nicht stärker als auf solchen ohne Singschwäne. Entgegen unserer Vorhersage korrelierte das Vorkommen von Pfeifenten sogar positiv mit dem von Singschwänen. Außerdem ging der Bestand an Pfeifenten auf Seen mit rückläufiger Schachtelhalmvegetation nicht stärker zurück als auf Seen mit gleichbleibendem Schachtelhalmbestand. Unsere Untersuchung konnte die Idee, dass Singschwäne durch ihr Abweiden von Schachtelhalm einen negativen Einfluss auf Pfeifenten hätten, nicht unterstützen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bakker ES, Pagès JF, Arthur R, Alcoverro T (2016a) Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39:162–179

    Article  Google Scholar 

  • Bakker ES, Wood KA, Pagès JF, Veend GF, Christianen MJA, Santamaría L, Nolet BA, Hilt S (2016b) Herbivory on freshwater and marine macrophytes: a review and perspective. Aquat Bot 135:18–36

    Article  Google Scholar 

  • Beletsky LD, Orians GH (1994) Site fidelity and territorial movements of males in a rapidly declining population of Yellow-headed Blackbirds. Behav Ecol Sociobiol 34:257–265

    Article  Google Scholar 

  • BirdLife International (2015) European Red List of birds. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Carey MP, Sanderson BL, Barnas KA, Olden JD (2012) Native invaders—challenges for science, management, policy, and society. Front Ecol Environ 10:373–381

    Article  Google Scholar 

  • Conover MR, Kania GS (1994) Impact of interspecific aggression and herbivory by Mute Swans on native water-fowl and aquatic vegetation in New England. Auk 111:744–748

    Google Scholar 

  • Elmberg J, Nummi P, Pöysä H, Sjöberg K (1993) Factors affecting species number and density of dabbling duck guilds in North Europe. Ecography 16:251–260

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Foster CN, Barton PS, Lindenmayer DB (2014) Effects of large native herbivores on other animals. J Appl Ecol 51:929–938

    Article  Google Scholar 

  • Fox AD, Dalby L, Christensen TK, Nagy S, Balsby TJS, Crowe O, Clausen P, Deceuninck B, Devos K, Holt CA, Hornman M, Keller V, Langendoen T, Lehikoinen A, Lorentsen S-H, Molina B, Nilsson L, Stipniece A, Svenning J-C, Wahl J (2016) Seeking explanations for recent changes in abundance of wintering Eurasian Wigeon (Anas penelope) in northwest Europe. Ornis Fenn 93:12–25

    Google Scholar 

  • Fretwell SD, Lucas HJ Jr (1970) On territorial behaviour and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor 19:16–36

    Article  Google Scholar 

  • Gayet G, Guillemain M, Fritz H, Mesleard F, Begnis C, Costiou A, Body G, Curtet L, Broyer J (2011a) Do Mute Swan (Cygnus olor) grazing, swan residence and fishpond nutrient availability interactively control macrophyte communities? Aquat Bot 95:110–116

    Article  Google Scholar 

  • Gayet G, Guillemain M, Mesléard F, Fritz H, Vaux V, Broyer J (2011b) Are Mute Swans (Cygnus olor) really limiting fishpond use by waterbirds in the Dombes, Eastern France. J Ornithol 152:45–53

    Article  Google Scholar 

  • Gayet G, Guillemain M, Defos du Rau P, Grillas P (2014) Effects of Mute Swan on wetlands: a synthesis. Hydrobiologia 723:195–204

    Article  Google Scholar 

  • Gayet G, Calenge C, Broyer J, Mesléard F, Vaux V, Fritz H, Guillemain M (2016) Analysis of spatial point pattern shows no desertion of breeding Mute Swan areas by the other waterbirds within fishpond. Acta Ornithol 51:151–162

    Article  Google Scholar 

  • Haapanen A (1987) The Whooper Swan population in Finland. Lintumies 22:146–150 (in Finnish with English summary)

    Google Scholar 

  • Haapanen A (1991) Whooper Swan Cygnus c. cygnus population dynamics in Finland. Wildfowl Suppl 1:137–141

    Google Scholar 

  • Haapanen A, Helminen M, Suomalainen HK (1977) The summer behaviour and habitat use of the Whooper Swan Cygnus c. cygnus. Finn Game Res 36:49–81

    Google Scholar 

  • Haila Y, Nicholls AO, Hanski IK, Raivio S (1996) Stochasticity in bird habitat selection: year-to-year changes in territory locations in a boreal forest bird assemblage. Oikos 76:536–552

    Article  Google Scholar 

  • Hansson L-A, Annadotter H, Bergman E, Hamrin SF, Jeppesen E, Kairesalo T, Luokkanen E, Nilsson P-Å, Søndergaard M, Strand J (1998) Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1:558–574

    Article  Google Scholar 

  • Jacobsen OW (1991) Feeding behavior of breeding Wigeon Anas penelope in relation to seasonal emergence and swarming behavior of chironomids. Ardea 79:309–418

    Google Scholar 

  • Jacobsen OW (1993) Use of feeding habitats by breeding Eurasian Wigeon. Can J Zool 71:1046–1054

    Article  Google Scholar 

  • Johnson MD (2007) Measuring habitat quality: a review. Condor 109:489–504

    Article  Google Scholar 

  • Knudsen HL, Laubek B, Ohtonen A (2002) Growth and survival of Whooper Swan cygnets reared in different habitats in Finland. Waterbirds 25:211–220

    Google Scholar 

  • Lehikoinen A, Pöysä H, Rintala J, Väisänen RA (2013) Population changes of 20 waterbird species in Finnish lakes in 1986–2012. Linnut-Vuosikirja 2012:95–101 (in Finnish with English summary)

    Google Scholar 

  • Lehikoinen A, Rintala J, Lammi E, Pöysä H (2016) Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Anim Conserv 19:88–95

    Article  Google Scholar 

  • MacNally R, Bowen M, Howes A, McAlpine CA, Maron M (2012) Despotic, high-impact species and the subcontinental scale control of avian assemblage structure. Ecology 93:668–678

    Article  PubMed  Google Scholar 

  • Merikallio E (1958) Finnish birds their distribution and numbers. Fauna Fenn 5:1–181

    Google Scholar 

  • Nummi P, Paasivaara A, Suhonen S, Pöysä H (2013) Wetland use by brood-rearing female ducks in a boreal forest landscape: the importance of food and habitat. Ibis 155:68–79

    Article  Google Scholar 

  • O’Connor RJ (1985) Behavioural regulation of bird populations: a review of habitat use in relation to migration and residency. In: Smith RH, Sibly RM (eds) Behavioural ecology: ecological consequences of adaptive behaviour. Blackwell Scientific, Oxford, pp 105–142

    Google Scholar 

  • O’Connor RJ (1986) Dynamical aspects of avian habitat use. In: Verner J, Morrison ML, Ralph CJ (eds) Wildlife 2000. Modeling habitat relationships of terrestrial vertebrates. University of Wisconsin Press, Madison, pp 235–240

    Google Scholar 

  • Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979

    PubMed  Google Scholar 

  • Olin M, Rask M, Ruuhijärvi J, Kurkilahti M, Ala-Opas P, Ylönen O (2002) Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. J Fish Biol 60:593–612

    Article  Google Scholar 

  • Ottosson U, Ottvall R, Elmberg J, Green M, Gustafsson R, Haas F, Holmqvist N, Lindström Å, Nilsson L, Svensson M, Tjernberg M (2012) Fåglarna i Sverige—antal och förekomst. Sveriges Ornitologiska Förening, Stockholm (in Swedish with English summary)

  • Peterson SL, Rockwell RF, Witte CR, Koons DN (2013) The legacy of destructive Snow Goose foraging on supratidal marsh habitat in the Hudson Bay Lowlands. Arctic Antarctic Alpine Res 45:575–583

    Article  Google Scholar 

  • Peterson SL, Rockwell RF, Witte CR, Koons DN (2014) Legacy effects of habitat degradation by Lesser Snow Geese on nesting Savannah Sparrows. Condor 116:527–537

    Article  Google Scholar 

  • Pöysä H (2001) Dynamics of habitat distribution in breeding Mallards: assessing the applicability of current habitat selection models. Oikos 94:365–373

    Article  Google Scholar 

  • Pöysä H, Pesonen M (2003) Density dependence, regulation and open-closed populations: insights from the Wigeon, Anas penelope. Oikos 102:358–366

    Article  Google Scholar 

  • Pöysä H, Sorjonen J (2000) Recolonization of breeding waterfowl communities by the Whooper Swan: vacant niches available. Ecography 23:342–348

    Article  Google Scholar 

  • Pöysä H, Rintala J, Lehikoinen A, Väisänen RA (2013) The importance of hunting pressure, habitat preference and life history for population trends of breeding waterbirds in Finland. Eur J Wildl Res 59:245–256

    Article  Google Scholar 

  • Pöysä H, Elmberg J, Gunnarsson G, Holopainen S, Nummi P, Sjöberg K (2017) Habitat associations and habitat change: seeking explanation for population decline in breeding Eurasian Wigeon Anas penelope. Hydrobiologia 785:207–217

    Article  Google Scholar 

  • Pringle RM, Young TP, Rubenstein DI, McCauley DJ (2007) Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna. Proc Natl Acad Sci USA 104:193–197

    Article  CAS  PubMed  Google Scholar 

  • Roman J, Dunphy-Daly MM, Johnston DW, Read AJ (2015) Lifting baselines to address the consequences of conservation success. Trends Ecol Evol 30:299–302

    Article  PubMed  Google Scholar 

  • Sandsten H, Klaassen M (2008) Swan foraging shapes spatial distribution of two submerged plants, favouring the preferred prey species. Oecologia 156:569–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Saurola P, Valkama J, Velmala W (2013) The Finnish bird ringing atlas, vol 1. Finnish Museum of Natural History and Ministry of Environment, Helsinki

    Google Scholar 

  • Scheele BC, Foster CN, Banks SC, Lindenmayer DB (2017) Niche contractions in declining species: mechanisms and consequences. Trends Ecol Evol 32:346–355

    Article  PubMed  Google Scholar 

  • Tiainen J, Mikkola-Roos M, Below A, Jukarainen A, Lehikoinen A, Lehtiniemi T, Pessa J, Rajasärkkä A, Rintala J, Sirkiä P, Valkama J (2016) The 2015 Red List of Finnish bird species. Ympäristöministeriö & Suomen ympäristökeskus, Helsinki

    Google Scholar 

  • Valéry L, Fritz H, Lefeuvre JC, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351

    Article  Google Scholar 

  • Valéry L, Fritz H, Lefeuvre J, Simberloff D (2009) Invasive species can also be native. Trends Ecol Evol 24:585

    Article  PubMed  Google Scholar 

  • Valkama J, Vepsälänen V, Lehikoinen A (2011) The third Finnish breeding bird atlas. Finnish Museum of Natural History and Ministry of Environment, Helsinki, http://atlas3.lintuatlas.fi/english. Accessed 20 June 2017

  • van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manage 47:893–901

    Article  Google Scholar 

  • Wiens JA, Rotenberry JT (1981) Habitat associations and community structure of birds in shrubsteppe environments. Ecol Monogr 51:21–42

    Article  Google Scholar 

  • Wiens JA, Rotenberry JT, van Horne B (1986) A lesson in the limitations of field experiments: shrubsteppe birds and habitat alteration. Ecology 67:365–376

    Article  Google Scholar 

  • Wood KA, Stillman RA, Clarke RT, Daunt F, O’Hare MT (2012) The impact of waterfowl herbivory on plant standing crop: a meta-analysis. Hydrobiologia 686:157–167

    Article  Google Scholar 

  • Wood KA, O’Hare MT, McDonald C, Searle KR, Daunt F, Stillman RT (2017a) Herbivore regulation of plant abundance in aquatic ecosystems. Biol Rev 92:1128–1141

    Article  PubMed  Google Scholar 

  • Wood KA, Ponting J, D’Costa N, Newth JL, Rose PE, Glazov P, Rees EC (2017b) Understanding intrinsic and extrinsic drivers of aggressive behavior in waterbird assemblages: a meta-analysis. Anim Behav 126:209–216

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by previous grants from the Swedish Environmental Protection Agency. We would like to thank Suomalais-ruotsalainen kulttuurirahasto (the Finnish-Swedish Cultural Foundation) for supporting a workshop in Sweden for work on this manuscript. A grant by Maj and Tor Nessling Foundation to S. H. is highly appreciated. A grant from the Letterstedtska Föreningen (67/16) facilitated J. E.’s participation in the project. We thank two anonymous reviewers for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Pöysä.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pöysä, H., Elmberg, J., Gunnarsson, G. et al. Recovering Whooper Swans do not cause a decline in Eurasian Wigeon via their grazing impact on habitat. J Ornithol 159, 447–455 (2018). https://doi.org/10.1007/s10336-017-1520-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-017-1520-1

Keywords

Navigation