Skip to main content
Log in

Urocanic acid as an efficient hydroxyl radical scavenger: a quantum theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The photoisomerization of urocanic acid (UCA)—which is present in human skin epidermis, where it acts as a sunscreen—from its trans isomer to its cis isomer upon exposure to UV-B radiation is known to cause immunosuppression. In recent years, the antioxidant properties of UCA (it acts as a hydroxyl radical scavenger) have also been recognized. In view of this, the mechanisms of stepwise reactions of trans-UCA with up to four hydroxyl radicals were investigated. The molecular geometries of the different species and complexes involved in the reactions (reactant, intermediate and product complexes, as well as transition states) were optimized via density functional theory in the gas phase. Solvation in aqueous media was treated with single point energy calculations using DFT and the polarizable continuum model. Single point energy calculations in the gas phase and aqueous media were also carried out using second-order Møller–Plesset perturbation theory (MP2). The AUG-cc-pVDZ basis set was employed in all calculations. Corrections for basis set superposition error (BSSE) were applied. Vibrational frequency analysis was performed for each optimized structure to ensure the validity of the optimized transition states. It was found that the binding of the first OH· radical to UCA involves a positive energy barrier, while subsequent reactions of OH· radicals are exergonic. Transition states were successfully located, even in those cases where the barrier energies were found to be negative. The cis–trans isomerization barrier energy of UCA and that of the first OH· radical addition to UCA are comparable, meaning that both processes can occur simultaneously. It was found that UCA could serve as an antioxidant in the form of an efficient OH· radical scavenger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morrison H, Bernasconi C, Pandy G (1984) Photochem Photobiol 40:549–550

    Article  CAS  Google Scholar 

  2. Norval M, Simpson TJ, Ross JA (1989) Photochem Photobiol 50:267–275

    Article  CAS  Google Scholar 

  3. Noonan FP, De Fabo EC, Morrison H (1985) J Invest Dermatol 84:342–347

    Google Scholar 

  4. Tabachnick J, Weiss C (1959) Rad Result 11:684–699

    Article  CAS  Google Scholar 

  5. Morrison H (1985) Photodermatology 2:158–165

    CAS  Google Scholar 

  6. Gibbs NK, Norval M, Traynor M, Wolf BE, Johnson JC (1993) Photochem Photobiol 57:584–590

    Article  CAS  Google Scholar 

  7. Zenisek A, Kral JA, Hais MI (1955) Biochim Biophys Acta 18:589–591

    Article  CAS  Google Scholar 

  8. Concar D (1992) New Sci 134:23–28

    Google Scholar 

  9. De Fabo EC, Noonan FP (1983) J Exp Med 12:84–98

    Article  Google Scholar 

  10. Wille JJ, Kydonieus AF, Murphy GF (1999) Skin Pharmacol Appl Skin Physiol 12:18–27

    CAS  Google Scholar 

  11. Holan V, Kuffova L, Zajicova A, Krulova M, Filipec M, Holler P, Jancarek AJ (1998) Immunol Today 161:3237–3241

    CAS  Google Scholar 

  12. Norval M, Gibbs NK, Gilmour J (1995) Photochem Photobiol 62:209–217

    Article  CAS  Google Scholar 

  13. Noonan FP, De Fabo EC (1992) Immunol Today 13:250–254

    Article  CAS  Google Scholar 

  14. Higaki Y, Hauser C, Siegenthaler G, Saurat JH (1986) Acta Derm Venereol (Stockh) 66:523–526

    CAS  Google Scholar 

  15. Noonan FP, De Fabo EC, Morrison HJ (1988) Invest Dermatol 90:92–99

    Article  CAS  Google Scholar 

  16. Rattis FM, Péguet-Navarro J, Courtellemont, Redziniak G, Schmitt D (1995) Photochem Photobiol 164:65–72

    CAS  Google Scholar 

  17. Lappin MB, Weiss JM, Schopf E, Norval M, Simon JC (1997) Photodermatol Photoimmunol Photomed 13:163–168

    CAS  Google Scholar 

  18. Olivarius FF, Dewulf HC, Crosby J, Norval M (1996) Photodermatol Photoimmunol Photomed 12:95–99

    Google Scholar 

  19. Shukla MK, Mishra PC (1995) Spectrochim Acta Part A 51:831–838

    Article  Google Scholar 

  20. Li B, Hanson KM, Simon JD (1997) J Phys Chem B 101:969–972

    CAS  Google Scholar 

  21. Hanson KM, Li B, Simon JD (1997) J Am Chem Soc 119:2715–2721

    Article  CAS  Google Scholar 

  22. Hanson KM, Simon JD (1998) Photochem Photobiol 67:538–540

    Article  CAS  Google Scholar 

  23. Haralampas GN, Ranson C, Ye T, Rozanaowska M, Wrona M, Sarna T, Simon JD (2002) J Am Chem Soc 124:3461–3468

    Article  Google Scholar 

  24. Brookman J, Chacon JN, Sinclair RS (2002) Photochem Photobiol 1:327–332

    Article  CAS  Google Scholar 

  25. Wendy LR, Levy DH (2001) J Am Chem Soc 123:961–966

    Article  Google Scholar 

  26. Ryan WL, Levy DH (2001) J Am Chem Soc 123:961–966

    Article  CAS  Google Scholar 

  27. Danielsson J, Laaksonen A (2003) Chem Phys Lett 370:625–630

    Article  CAS  Google Scholar 

  28. Kammeyer A, Eggelte TA, Overmars H, Bootsma JD, Bos JD, Teunissen MBM (2001) Biochim Biophys Acta 1526:277–285

    CAS  Google Scholar 

  29. Elton LM, Morrison H (2002) Photochem Photobiol 75:565–569

    Article  Google Scholar 

  30. Roa R, O’Shea KE (2006) Tetrahedron 62:10700–10708

    Article  CAS  Google Scholar 

  31. Halliwell B, Gutteridge JMC (1998) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, p 55

  32. Darr D, Fridovich I (1994) J Invest Dermatol 102:671–675

    Article  CAS  Google Scholar 

  33. Black HS (1987) Photochem Photobiol 46:213–221

    Article  CAS  Google Scholar 

  34. Gorodetsky R, Sheskin J, Weinreb A (1986) Int J Dermatol 25:440–445

    Article  CAS  Google Scholar 

  35. Goldblum WR, Derby S, Lerner AB (1953) J Invest Dermatol 20:13–18

    CAS  Google Scholar 

  36. Aubailly M, Santus R, Salmon S (1991) Photochem Photobiol 54:769–773

    Article  CAS  Google Scholar 

  37. Boveris A, Oshino N, Chance B (1972) Biochem J 128:617–630

    CAS  Google Scholar 

  38. Shukla MK, Mishra PC (1996) J Mol Struct 377:247–259

    Article  CAS  Google Scholar 

  39. Jena NR, Mishra PC (2006) Chem Phys Lett 422:417–423

    Article  CAS  Google Scholar 

  40. Mishra SK, Mishra PC (2002) J Comput Chem 23:530–540

    Article  CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  43. Hariharan PC, Pople JA (1972) Chem Phys Lett 66:217–219

    Article  Google Scholar 

  44. Becke AD (1988) Phys Rev 38:3098–3100

    Article  CAS  Google Scholar 

  45. Schoone K, Smets J, Houben L, Van Bael MK, Adamowicz L, Maes G (1998) J Phys Chem A 102:4863–4877

    Article  CAS  Google Scholar 

  46. Cossi M, Scalmani G, Regga N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  47. Miertus S, Tomasi (1982) J Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  48. Miertus S, Scrocco E, Tomasi (1981) J Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  49. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  50. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  51. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  52. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  53. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammy R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvodar P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A.11.2. Gaussian Inc., Pittsburgh

  55. Frisch AE, Dennington RD, Keith TA, Neilsen AB, Holder AJ (2003) GaussView, Rev 3.9. Gaussian Inc., Pittsburgh

  56. Danielsson J, Uličný J, Laaksonen A (2001) J Am Chem A 123:9817–9821

    Article  CAS  Google Scholar 

  57. Tiwari S, Mishra PC, Suhai S (2007) Int J Quantum Chem 108:1004–1016

    Article  Google Scholar 

  58. Tiwari S, Mishra PC (2009) Spectrochim Acta Part A 73:719–729

    Article  Google Scholar 

  59. Lahti A, Hotokka M, Neuvonen K, Ayras P (1997) Struct Chem 8:331–342

    Article  CAS  Google Scholar 

  60. Lahti A, Hotokka M, Neuvonen K, Ayras P (1995) J Mol Struct Theochem 331:169–179

    Article  CAS  Google Scholar 

  61. Lahti A, Hotokka M, Neuvonen K, Karlstrom G (1999) Int J Quantum Chem 72:25–37

    Article  CAS  Google Scholar 

  62. Page CS, Merchán M, Serrano-Andres L, Olivucci M (1999) J Phys Chem A 103:9864–9871

    Article  CAS  Google Scholar 

  63. Danielsson J, Söderhäll A, Laaksonen A (2002) Mol Phys 100:1873–1886

    Article  CAS  Google Scholar 

  64. Page CS, Olivucci M, Merchán M (2000) J Phys Chem A 104:8796–8805

    Article  CAS  Google Scholar 

  65. Hawkinson SW (1977) Acta Cryst 33:2288–2294

    Article  Google Scholar 

  66. Jeffrey CG, Lubos M (1997) Phys Rev Lett 79:4353–4357

    Article  Google Scholar 

  67. Ghigo G, Tonachini G (1999) J Chem Phys 110:7298–7304

    Article  CAS  Google Scholar 

  68. Glukhovtsev MN, Bach R, Pross A, Radom LJ (1996) Chem Phys Lett 260:558–564

    Article  CAS  Google Scholar 

  69. Jena NR, Mishra PC (2005) J Phys Chem B 29:14205–14218

    Article  Google Scholar 

  70. Tiwari S, Shukla PK, Mishra PC (2008) J Mol Model 14:631–640

    Article  CAS  Google Scholar 

  71. Szori M, Fittschen C, Csizmadia IG, Viskolcz B (2006) J Chem Theory Comput 2:1575–1586

    Article  CAS  Google Scholar 

  72. Chen X, Zhan CG (2004) J Phys Chem A 108:3789–3791

    Article  CAS  Google Scholar 

  73. Kammeijer A, Bos JD (2006) US Patent 7056938

  74. Chadra AK, Uchimaru T (2002) Int J Mol Sci 3:407–422

    Article  Google Scholar 

  75. McNaught A, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell, Oxford

  76. Mataxain JM, Padro D, Ristilla M, Strid A, Eriksson LA (2009) J Phys Chem Lett B 113:9629–9632

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research (New Delhi) and the University Grants Commission (New Delhi) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phool Chand Mishra.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Fig. SI1

Addition reactions of the second OH· radical at the C2, C4, C6 and C7 sites of C5.OH· (adduct of urocanic acid). ZPE- and BSSE-corrected barrier and released energies (kcal/mol) obtained in aqueous media at the MP2/AUG-cc-pVDZ level of theory using the geometries optimized at the BHandHLYP/AUG-cc-pVDZ level in the gas phase are given near the arrows (DOC 882 kb)

Fig. SI2

Addition reactions of the second OH· radical at the C2, C4 and C5 sites of C6.OH· (adduct of urocanic acid). ZPE- and BSSE-corrected barrier and released energies (kcal/mol) obtained in aqueous media at the MP2/AUG-cc-pVDZ level of theory using the geometries optimized at the BHandHLYP/AUG-cc-pVDZ level in the gas phase are given near the arrows (DOC 873 kb)

Fig. SI3

Addition reactions of the second OH· radical at the C2, C4 and C5 sites of C7.OH· (adduct of urocanic acid). ZPE- and BSSE-corrected barrier and released energies (kcal/mol) obtained in aqueous media at the MP2/AUG-cc-pVDZ level of theory using the geometries optimized at the BHandHLYP/AUG-cc-pVDZ level in the gas phase are given near the arrows (DOC 799 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Chand Mishra, P. Urocanic acid as an efficient hydroxyl radical scavenger: a quantum theoretical study. J Mol Model 17, 59–72 (2011). https://doi.org/10.1007/s00894-010-0699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0699-3

Keywords

Navigation